Skip to main content
Log in

Theory for photon emission from a scanning tunneling microscope

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We have calculated the rate of light emission from a scanning tunneling microscope with an Ir tip probing a silver film. In the calculation we model the tip by a sphere. We find a considerable enhancement of the light emission compared with for example inverse photoemission experiments. This enhancement is explained as the result of an amplification of the electromagnetic field in the area below the microscope tip due to a localised interface plasmon. We estimate that one out of 104 tunneling electrons will emit a photon in the visible range. Due to an electromagnetic decoupling of the sphere from the sample the enhanced emission is lost for photon energies above a certain value. We also find that the experimentally observed maximum in the light emission as a function of bias voltage is related to the behavior of tip-sample separation versus bias voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Binnig, G., Rohrer, H.: IBM J. Res. Develop.30, 355 (1986)

    Google Scholar 

  2. Gimzewski, J.K., Sass, J.K., Schlitter, R.R., Schott, J.: Europhys. Lett.8, 435 (1989)

    Google Scholar 

  3. Lambe, J., McCarthy, S.L.: Phys. Rev. Lett.37, 923 (1976)

    Google Scholar 

  4. Adams, A., Hansma, P.K.: Phys. Rev. B23, 3597 (1981)

    Google Scholar 

  5. Bloemer, M.J., Mantovani, J.G., Goudonnet, J.P., James, D.R., Warmack, R.J., Ferell, T.L.: Phys. Rev. B35, 5947 (1987)

    Google Scholar 

  6. Laks, B., Mills, D.L.: Phys. Rev. B21, 5175 (1980)

    Google Scholar 

  7. Arya, K., Zeyher, R.: Phys. Rev. B28, 4080 (1983)

    Google Scholar 

  8. Rendell, R. W., Scalapino, D.J.: Phys. Rev. B24, 3276 (1981)

    Google Scholar 

  9. Persson, B.N.J., Baratoff, A.: Bull. Am. Phys. Soc.35, 634 (1990); see also Berndt, R., Baratoff, A., Gimzewski, J.K.: In: Behm, R.J. (ed.) Scanning tunneling microscopy and related methods, p. 269–280. Kluwer Academic Publishers 1990

    Google Scholar 

  10. Johansson, P., Monreal, R., Apell, P.: Phys. Rev. B42, 9210 (1990). (Due to a numerical error the absolute intensities presented in Figs. 3 and 4 are a factor of 2 too small.)

    Google Scholar 

  11. Reihl, B., Coombs, J.H., Gimzewski, J.K.: Surf. Sci.211/212, 156 (1989)

    Google Scholar 

  12. Hulet, R.G., Hilfer, E.S., Kleppner, D.: Phys. Rev. Lett.55, 2137 (1985)

    Google Scholar 

  13. Lorrain, P., Corson, D.R.: Electromagnetic fields and waves, p. 632. San Francisco: Freeman 1970

    Google Scholar 

  14. Jackson, J.D.: Classical electrodynamics New York: Wiley 1975

    Google Scholar 

  15. Pitarke, J.M., Flores, F., Echenique, P.M.: Surf. Sci.234, 1 (1990)

    Google Scholar 

  16. Johnson, P.B., Christy, R.W.: Phys. Rev. B6, 4370, (1972) Weaver, J.H., Krafka, C., Lynch, D.W., Koch, E.E.: Physics data No. 18-1. Karlsruhe: Fachinformationszentrum 1981

    Google Scholar 

  17. Morse, P.M., Feschbach, H.: Methods of theoretical physics, Vol. II, pp. 1298–1301. New York: McGraw Hill 1953

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johansson, P., Monreal, R. Theory for photon emission from a scanning tunneling microscope. Z. Physik B - Condensed Matter 84, 269–275 (1991). https://doi.org/10.1007/BF01313548

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313548

Keywords

Navigation