Skip to main content
Log in

Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Growth and herbivory of heterotrophic dinoflagellates (Gymnodinium sp.) from the Weddell Sea and the Weddell/Scotia Confluence were studied in 1988 in 100-liter microcosms. The microcosms were screened through 200-µm or 20-µm mesh nets and incubated for 12 d at 1 °C under artificial light. Mean cell volume of dinoflagellates was 1 000 to 1 500µm3, and that of their phytoplankton prey 360 to 430µm3. Dinoflagellate growth rate followed a Holling type II functional response, with a maximum growth rate of 0.3 d−1 and half-saturation food concentrations of 1.0µg chlorophylla l−1, 50µg C l−1, or 1 500 cells ml−1. Carbon budgets based on14CO2 assimilation and biomasses of phytoplankton and heterotrophic dinoflagellates suggested a balance between phytoplankton grazing loss and dinoflagellate consumption, assuming a dinoflagellate carbon conversion efficiency of 40%. Applying this to the functional response yielded estimates of maximum ingestion rate (0.8µg Cµg−1 C d−1, or 6 pg C dinoflagellate−1 h−1) and maximum clearance (0.8 to 1.2 × 105 body volumes h−1, or 80 to 120 nl ind.−1 h−1). The microcosm experiments suggested that heterotrophic dinoflagellates may contribute significantly to maintenance of low phytoplankton biomass in the Southern Ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Andersen, P. (1989). Functional biology of the choanoflagellate Diaphanoeca grandis Ellis. Mar. microb. Fd Webs 3: 35–50

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J. G., Gray, J. S., Meyer-Reil, L. A., Thingstad, F. (1983). The ecological role of water-column microbes in the sea. Mar. Ecol. Prog. Ser. 10: 257–263

    Google Scholar 

  • Baar, H. J. W. de, Buma, A. G. J., Nolting, R. F., Cadee, G. C., Jaques, G., Treguer, P. (1990). On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar. Ecol. Prog. Ser. 65: 105–122

    Google Scholar 

  • Bjørnsen, P. K., Kuparinen, J. (1991). Determination of bacterioplankton biomass, net production and growth efficiency in the Southern Ocean. Mar. Ecol. Prog. Ser. 71: 185–194

    Google Scholar 

  • Børsheim, K. Y., Bratbak, G. (1987). Cell volume to cell carbon conversion factors for a bacteriovorousMonas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36: 171–175

    Google Scholar 

  • Caron, D. A., Goldman, J. C., Dennett, M. R. (1986). Effect of temperature on growth, respiration, and nutrient regeneration by an omnivorous microflagellate. Appl. envirl Microbiol. 52: 1340–1347

    Google Scholar 

  • Choi, J. W., Stoecker, D. K. (1989). Effects of fixation on cell volume of marine planktonic protozoa. Appl. envirl. Microbiol. 55: 1761–1765

    Google Scholar 

  • Edler, L. (1979). Recommendations for marine biological studies in the Baltic Sea: phytoplankton and chlorophyll. Publs Baltic mar. Biologists 5: 1–38

    Google Scholar 

  • Fenchel, T. (1982). Ecology of heterotrophic flagellates. II. Bioenergetics and growth. Mar. Ecol. Prog. Ser. 8: 225–231

    Google Scholar 

  • Fenchel, T. (1986). The ecology of heterotrophic flagellates. Adv. microb. Ecol. 9: 57–95

    Google Scholar 

  • Fenchel, T. (1987). Ecology — potentials and limitations. In: Kinne, O. (ed.) Excellence in ecology 1. Ecology Institute, Oldendorf/Luhe, Germany

    Google Scholar 

  • Gaines, G., Elbrächter, M. (1987): Heterotrophic nutrition. In: Taylor, F. J. R. (ed.) The biology of dinoflagellates. Blackwell, Oxford, p. 224–268

    Google Scholar 

  • Gaines, G., Taylor, F. J. R. (1984). Extracellular digestion in marine dinoflagellates. J. Plankton Res. 6: 1057–1061

    Google Scholar 

  • Garrison, D. L., Gowing, M. M., Buck, K. R., Coale, S. L., Thomsen, H. A. (1986). Microheterotrophs in the ice edge zone: an AMERIEZ study. Antarctic J. U.S. 21: 169–170

    Google Scholar 

  • Goldman, J.C., Dennett, M. R., Gordin, H. (1989). Dynamics of herbivorous grazing by the heterotrophic dinoflagellateOxyrrhis marina. J. Plankton Res. 11: 391–407

    Google Scholar 

  • Haas, L. W. (1982). Improved epifluoresence microscopy for observing planktonic microorganisms. Ann. Inst. Oceanogr. 58: 261–266

    Google Scholar 

  • Heinbokel, J. F. (1978). Studies of the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47: 177–189

    Google Scholar 

  • Hewes, C. D., Holm-Hansen, O., Sakshaug, E. (1985). Alternate carbon pathways at lower trophic levels in the Antarctic food web: In: Siegfried, W. R., Condy, P. R., Laws, R. M. (eds.) Antarctic nutrient cycles and food webs. Springer, Berlin, p. 277–283

    Google Scholar 

  • Jacobson, D. J. (1988). Growth and feeding rates ofProtoperidinium. In: Burkill, P. H., Reid, P. C. (eds.) NATO/ASI Protozoa and their role in marine processes. Workshop abstract. Plymouth Marine Laborataory, Plymouth, U.K.

    Google Scholar 

  • Jacobsen, D. J., Anderson, D. M. (1986). Thecate heterotrophic dinoflagellates: feeding behaviour and mechanisms. J. Phycol. 22: 249–258

    Google Scholar 

  • Jonsson, P. R. (1986). Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Chiophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33: 265–277

    Google Scholar 

  • Lessard, E. J. (1991). The trophic role of heterotrophic dinoflagellates in diverse marine environments. Mar. microb. Fd Webs 5

  • Lessard, E. J., Swift, E. (1985). Species-specific grazing rates of hetertrophic dinoflagellates in oceanic waters, measured with a dual-label radio-isotope technique. Mar. Biol. 87: 289–296

    Google Scholar 

  • Lorenzen, C. J. (1967). Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnol. Oceanogr. 12: 343–346

    Google Scholar 

  • Martin, J. H., Fitzwater, S. E. (1988). Iron deficiency limits phytoplankton growth in the Northeast Pacific subarctic. Nature, Lond. 331: 341–343

    Google Scholar 

  • Nelson, D. M., Smith, W. O., Muench, R. D., Gordon, L. I., Sullivan, C. W., Husby, D. M. (1989). Particulate matter and nutrient distribution in the ice-edge zone of the Weddell Sea: relationship to hydrography during late summer. Deep-Sea Res. 36: 191–209

    Google Scholar 

  • Nöthig, E.-M., Bodungen, B. von (1989). Occurrence and vertical flux of faecal pellets of probable protozoan origin in the Southeastern Weddell Sea (Antarctica). Mar. Ecol. Prog. Ser. 56: 281–289

    Google Scholar 

  • Peterson, B. J. (1980). Aquatic primary productivity and the14CO2-method. A. Rev. Ecol. Syst. 11: 359–385

    Google Scholar 

  • Putt, M., Rivkin, R. B., Prézelin, B. B. (1988). Effect of altered photic regimes on diel patterns of species-specific photosynthesis. Mar. Biol. 97: 435–443

    Google Scholar 

  • Putt, M., Stoecker, D. K. (1989). An experimentally determined carbon:volume ratio for marine “oligotrichous” ciliates from estuarine and coastal areas. Limnol. Oceanogr. 34: 1097–1103

    Google Scholar 

  • Shapiro, L. P., Haugen, E. M., Carpenter, E. J. (1989). Occurrence and abundance of green-fluorescing dinoflagellates in surface waters of the Northwest Atlantic and Northeast Pacific oceans. J. Phycol. 25: 189–191

    Google Scholar 

  • Sheldon, R. W., Prakash, A., Sutcliffe, W. H. (1972). The size distribution of particles in the ocean. Limnol. Oceanogr. 17: 327–340

    Google Scholar 

  • Sheldon, R. W., Rassoulzadegan, F. (1987). A method for measuring plankton production by particle counting. Mar. microb. Fd Webs 2: 29–44

    Google Scholar 

  • Sherr, B. F., Sherr, E. B., Berman, T. (1983). Grazing, growth and ammonia excretion of a heterotrophic microflagellate fed with four species of bacteria. Appl. envirl Microbiol. 45: 1196–1204

    Google Scholar 

  • Sherr, B. F., Sherr, E. B., Rassoulzadegan, F. (1988). Rates of digestion of bacteria by marine phagotrophic protozoa: temperature dependence. Appl. envirl Microbiol. 54: 1091–1095

    Google Scholar 

  • Smetacek, V. (1981). The annual cycle of protozooplankton in the Kiel Bight. Mar. Biol. 63: 1–11

    Google Scholar 

  • Smith, W. O. (1987). Phytoplankton dynamics in marginal ice zones. Oceanogr. mar. Biol. A. Rev. 25: 11–38

    Google Scholar 

  • Smith, W. O., Nelson, D. M. (1985). Phytoplankton bloom produced by a receding ice edge in the Ross Sea: spatial coherence with the density field. Science, N.Y. 227: 163–166

    Google Scholar 

  • Spies, A. (1987). Growth rates of Antarctic marine phytoplankton in the Weddell Sea. Mar. Ecol. Prog. Ser. 41: 267–274

    Google Scholar 

  • Strathman, R. R. (1967). Estimating the organic carbon content of phytoplankton from cell volume or plasma volume. Limnol. Oceanogr. 12: 411–418

    Google Scholar 

  • Tilzer, M. M., Bodungen, B. von, Smetacek, V. (1985). Light-dependence of phytoplankton photosynthesis in the Antarctic Ocean: implications for regulating productivity. In: Siegfried, W. R., Condy, P. R., Laws, R. M. (eds.) Antarctic nutrient cycles and food webs. Springer, Berlin, p. 277–283

    Google Scholar 

  • Verity, P. G. (1985). Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30: 1268–1282

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by T. Fenchel, Helsingør

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bjørnsen, P.K., Kuparinen, J. Growth and herbivory by heterotrophic dinoflagellates in the Southern Ocean, studied by microcosm experiments. Mar. Biol. 109, 397–405 (1991). https://doi.org/10.1007/BF01313505

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313505

Keywords

Navigation