Skip to main content
Log in

Dynamic conductivity of superionic conductors in an interacting Brownian particle model

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The mobile ion dynamics in superionic conductors is described by a many-particle Fokker-Planck equation. A time-dependent mean-field equation for the single-particle distribution is derived, which implies a general relationship between the dynamic conductivity and structural properties. We find that the low-frequency diffusive regime is governed by a renormalized single-particle potential, whereas the high-frequency vibrational response is determined by the bare interaction between the two species of conducting and lattice ions. Numerical results, based on matrix continued fractions are presented for the whole frequency-range and implications with respect to experiments are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuchiya, Y. Tamaki, Waseda, Y.: J. Phys. C: Solid State Physics12, 5361 (1979)

    Google Scholar 

  2. Schulz, H.: Annu. Rev. Mater. Sci.12, 351 (1982)

    Google Scholar 

  3. Cava, R.J., Reidinger, F., Wuensch, B.J.: Solid State Commun.24, 411 (1977); Solid State Chem.31, 69 (1980)

    Google Scholar 

  4. See Chandra, S.: Superionic solids, principles and applications. Amsterdam, New York, Oxford: North-Holland Publ. Comp. 1981

    Google Scholar 

  5. Bunde, A., Dieterich, W.: Solid State Commun.37, 229 (1981); in: Physics of intercalation compounds. In: Springer Series in Solid-State Sciences. Pietronero, L., Tosatti, E. (eds.), Vol. 38. Berlin, Heidelberg, New York: Springer-Verlag 1981

    Google Scholar 

  6. Bunde, A.: Z. Phys. B—Condensed Matter44, 225 (1981)

    Google Scholar 

  7. Dieterich, W., Fulde, P., Peschel, I.: Adv. Phys.29, 527 (1980)

    Google Scholar 

  8. Geisel, T.: Phys. Rev. B20, 4294 (1979)

    Google Scholar 

  9. Radons, G., Geisel, T., Keller, J.: Solid State Ionics13, 75 (1984)

    Google Scholar 

  10. Radons, G., Keller, J., Geisel, T.: Z. Phys. B—Condensed Matter61, 339 (1985)

    Google Scholar 

  11. Jacobson, S.H., Nitzan, A., Ratner, M.A.: J. Chem. Phys.72, 3712 (1980)

    Google Scholar 

  12. Jacobson, S.H., Ratner, M.A., Nitzan, A.: J. Chem. Phys.77, 5752 (1982)

    Google Scholar 

  13. Preliminary results were presented in Dieterich, W.: J. Stat. Phys.39, 583 (1985)

    Google Scholar 

  14. Dieterich, W., Geisel, T., Peschel, I.: Z. Phys.—Condensed Matter29, 9 (1978)

    Google Scholar 

  15. Risken, H., Vollmer, H.D.: Z. Phys. B—Condensed Matter21, 209 (1978)

    Google Scholar 

  16. Risken, H.: The Fokker-Planck-equation. Methods of solution and applications. In: Springer Series in synergetics. Vol. 18. Berlin, Heidelberg, New York: Springer-Verlag 1984

    Google Scholar 

  17. Trullinger, S.E., Miller, M.D., Guyer, R.A., Bishop, A.R., Palmer, F., Krumhansl, J.A.: Phys. Rev. Lett.40, 206 (1978)

    Google Scholar 

  18. Imada, M.: J. Phys. Soc. Jpn.49, 1247 (1980)

    Google Scholar 

  19. Hansen, J.P., McDonald, I.R.: Theory of simple liquids. London: Academic Press 1976

    Google Scholar 

  20. Lebowitz, J.L., Percus, J.K.: J. Math. Phys.4, 116 (1963)

    Google Scholar 

  21. Equation (2.16) can be derived by different methods, e.g. by applying the Mori formalism to Eq. (2.1) and neglecting memory-effects. See e.g. Munakata, T., Tsurui, A.: Z. Phys. B—Condensed Matter34, 203 (1979)

    Google Scholar 

  22. Dieterich, W.: In: Trends in physics 1981. Dorobantu, I.A. (ed.), p. 698. Bucharest: European Physical Society 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, U., Dieterich, W. Dynamic conductivity of superionic conductors in an interacting Brownian particle model. Z. Physik B - Condensed Matter 62, 287–294 (1986). https://doi.org/10.1007/BF01313449

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313449

Keywords

Navigation