Skip to main content
Log in

Replacement and aging of chloroplasts inStrombidium capitatum (Ciliophora: Oligotrichida)

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The planktonic ciliateStrombidium capitatum (Leegaard, 1915) Kahl, 1932 retains functional chloroplasts derived from ingested algal cells. Chloroplast replacement and aging were experimentally investigated in cultured ciliates provided with a cryptophyte (Pyrenomonas salina), a prymnesiophyte (Isochrysis galbana) and a prasinophyte (Pyramimonas sp.) as sources of plastids. All three algae were ingested and chloroplasts from all were retained by the ciliate. Within 15 min of exposure to the cryptophyte, this alga was taken up by the ciliates. Initially, most of the cryptophyte chloroplasts were in intact algal cells in ciliate vacuoles. By 2 h, cryptophyte plastids were commonly found free in the ciliate cytoplasm. WhenS. capitatum was switched from a diet containing cryptophytes to a non-cryptophyte diet, most cryptophyte chloroplasts were diluted out of the ciliates by cell division and/or replaced by non-cryptophyte chloroplasts within 9 h. When the ciliates are not provided with algae, they decrease in size and number. However, the starving ciliate cells contain some chloroplasts for as long as they live (40 h or more). Under these conditions, cryptophyte chloroplasts persist longer than the other chloroplast types. Our observations suggest that chloroplast retention times inS. capitatum depend on the type of chloroplast as well as the availability of phytoplankton containing suitable new chloroplasts, and probably also on the physiological states of the ingested algae and the ciliates. It is interesting that we were not able to grow this ciliate when we provided it only with prey that lacked chloroplasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Blackbourn, D. J., Taylor, F. J. R., Blackbourn, J. (1973). Foreign organelle retention by ciliates. J. Protozool. 20: 286–288

    Google Scholar 

  • Caron, D. A. (1987). Grazing of attached bacteria by heterotrophic microflagellates. Microb. Ecol. 13: 203–218

    Google Scholar 

  • Dodge, J. D. (1973). The fine structure of algal cells. Academic Press, New York

    Google Scholar 

  • Dodge, J. D. (1979). The phytoglagellates: fine structure and phylogeny. In: Levandowsky, M., Hutner, S. H. (eds.) Biochemistry and physiology of Protozoa, 2nd edn. Academic Press, New York, p. 7–57

    Google Scholar 

  • Guillard, R. R. L. (1973). Division rates. In: Stein, J. R. (ed.) Handbook of phycological methods — culture methods and growth measurements. Cambridge Univ. Press, Cambridge, p. 290–311

    Google Scholar 

  • Guillard, R. R. L. (1975). Culture of phytoplankton for feeding marine invertebrates. In: Smith, W. L., Chanley, M. H. (eds.) Culture of marine invertebrate animals. Plenum Publ. Co., New York, p. 29–60

    Google Scholar 

  • Hawes, C. R., Cobb, A. H. (1980). The effects of starvation on the symbiotic chloroplasts inElysia viridis: a fine structural study. New Phytol. 84: 375–379

    Google Scholar 

  • Jonsson, P. R. (1987). Photosynthetic assimilation of inorganic carbon in marine oligotrich ciliates (Ciliophora, Oligotrichina). Mar. microb. Fd Webs 2: 55–68

    Google Scholar 

  • Larsen, J. (1988). An ultrastructural study ofAmphidinium poecilochroum (Dinophyceae), a phagotrophic dinoflagellate feeding on small species of cryptophytes. Phycologia 27: 366–377

    Google Scholar 

  • Laval-Peuto, M., Febvre M. (1986). On plastid symbiosis inTontonia appendiculariformis (Ciliophora, Oligotrichina). Biosystems (Amsterdam) 19: 137–158

    Google Scholar 

  • Laval-Peuto, M., Rassoulzadegan, F. (1988). Autofluorescence of marine planktonic Oligotrichina and other ciliates. Hydrobiologia 159: 99–110

    Google Scholar 

  • Laval-Peuto, M., Salvano, P., Gayol P., Greuet, C. (1986). Mixotrophy in marine planktonic ciliates: ultrastructural study ofTontonia appendiculariformis (Ciliophora, Oligotrichina). Mar. microb. Fd Webs 1: 81–104

    Google Scholar 

  • Lee, J. J., Lanners, J. J., Kuile, B. T. (1988). The retention of chloroplasts by the ForaminiferElphidium crispum. Symbioses 5: 45–60

    Google Scholar 

  • Leutenegger, S. (1984). Symbiosis in benthic foraminifera: specificity and host adaptations. J. foraml Res. 14: 16–35

    Google Scholar 

  • Levy, M. R., Elliott, A. M. (1968). Biochemical and ultrastructural changes inTetrahymena pyriformis during starvation. J. Protozool. 15: 208–222

    Google Scholar 

  • Lindholm, T., Mörk, A. C. (1989). Symbiotic algae and plastids in planktonic ciliates. Memo. Soc. Fauna Flora fenn. 65: 17–23

    Google Scholar 

  • Lopez, E. (1979). Algal chloroplasts in the protoplasm of three species of benthic foraminifera: taxonomic affinity, viability and persistence. Mar. Biol. 53: 201–211

    Google Scholar 

  • Messer, G., Ben-Shaul, Y. (1972). Changes in chloroplast structure during growth ofPeridinium cinctum Fa.westii (Dinophyceae). Phycologia 11: 291–299

    Google Scholar 

  • Montagnes, D. J. S., Lynn, D. H., Stoecker, D. K., Small, E. B. (1988). Taxonomic descriptions of one new species and redescription of four species in the family Strombidiidae (Ciliophora, Oligotrichida). J. Protozool. 35: 189–197

    Google Scholar 

  • Patterson, D. J., Dürrschmidt, M. (1987). Selective retention of chloroplasts by algivorous Heliozoa: fortuitous chloroplast symbiosis? Eur. J. Protistol. 23: 51–55

    Google Scholar 

  • Post, A. F., Dubinsky, Z., Wyman, K., Falkowski, P. G. (1985). Physiological responses of a marine planktonic diatom to transitions in growth irradiance. Mar. Ecol. Prog. Ser. 25: 141–149

    Google Scholar 

  • Reynolds, E. A. (1963). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17: 208–212

    Google Scholar 

  • Rhiel, E., Mörschel, E., Wehrmeyer, E. (1985). Correlation of pigment deprivation and ultrastructural organization of thylakoid membranes inCryptomonas maculata following nutrient deficiency. Protoplasma 129: 62–73

    Google Scholar 

  • Rogerson, A., Finlay, B. J., Berninger, U.-G. (1989). Sequential chloroplasts in the freshwater ciliateStrombidium viride (Ciliophora: Oligotrichida). Trans. Am. microsc. Soc. 108: 117–126

    Google Scholar 

  • Schnepf, E., Meier, R., Drebes G. (1988). Stability and deformation of diatom chloroplasts during food uptake of the parasitic dinoflagellate,Paulsenella (Dinophyta). Phycologia 27: 283–290

    Google Scholar 

  • Stoecker, D. K. (in press). Mixotrophy in marine planktonic ciliates: physiological and ecological aspects of plastid-retention by oligotrichs. In: Reid, P. C., Turley, C. M., Burkill, P. H. (eds.) Protozoa and their role in marine processes. NATO ASI Ecological Series, Springer-Verlag, New York

  • Stoecker, D. K., Michaels, A. E., Davis, L. H. (1987). Large proportion of marine planktonic ciliates found to contain functional chloroplasts. Nature 326: 790–792

    Google Scholar 

  • Stoecker, D. K., Silver, M. W. (1987). Chloroplast retention by marine planktonic ciliates. Endocytobiology III. Ann. N.Y. Acad. Sci. 503: 562–565

    Google Scholar 

  • Stoecker, D. K., Silver, M. W., Michaels, A. E., Davis, L. H. (1988). Obligate mixotrophy inLaboea strobila, a ciliate which retains chloroplasts. Mar. Biol. 99: 415–423

    Google Scholar 

  • Stoecker, D. K., Silver, M. W., Michaels, A. E., Davis, L. H. (1988/1989). Enslavement of algal chloroplasts by fourStrombidium spp. (Ciliophora, Oligotrichida). Mar. microb. Fd Webs 3: 79–100

    Google Scholar 

  • Thomsen, H. A. (1986). Photosynthetic picoplankton. Can. Bull. Fish. aquat. Sciences 214: 121–158

    Google Scholar 

  • Trench, R. K. (1979). The cell biology of plant-animal symbiosis. A. Rev. Pl Physiol. 30: 485–531

    Google Scholar 

  • Trench, R. K. (1980). Uptake, retention and function of chloroplasts in animal cells. In: W. Schwemmler, W., Schenk, H. E. A. (eds.) Endocytobiology. Walter de Gruyter, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Contribution No. 7241 from Woods Hole Oceanographic Institution. This research was supported by NSF grants OCE-8600765 and OCE-8709961 to D.K.S

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoecker, D.K., Silver, M.W. Replacement and aging of chloroplasts inStrombidium capitatum (Ciliophora: Oligotrichida). Mar. Biol. 107, 491–502 (1990). https://doi.org/10.1007/BF01313434

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313434

Keywords

Navigation