Skip to main content

Advertisement

Log in

Importance of grazing on the salt-marsh grassSpartina alterniflora to nitrogen turnover in a macrofaunal consumer,Littorina irrorata, and to decomposition of standing-deadSpartina

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Dying leaves ofSpartina alterniflora Loisel (hereafterSpartina) do not undergo abscission and consequently are at least partially degraded while remaining attached to the shoot, i.e., under conditions which may be very different from those occurring in litterbags used to measure decomposition ofSpartina at the sediment surface. Attached living and dead leaves in high-marsh areas are subject to grazing by the abundant gastropodLittorina irrorata Say (hereafterLittorina), a salt marsh periwinkle. In 1986, nitrogen assimilation from living and standing-deadSpartina byLittorina was examined in Sapelo Island (Georgia, USA) salt marshes by labelling plants with the stable nitrogen isotope15N and measuring the transfer into grazing snails in the field. The initial label of ca 8% total plant nitrogen declined to ca 1% over 5 mo, perhaps due to label dilution by less enriched nitrogen taken up and translocated from below- to above-groundSpartina biomass. Snails incorporatedSpartina-derived nitrogen into tissues at rates equal to 10 to 20% of total snail nitrogen 30-d−1 in summer and fall, and 2 to 5% 30-d−1 in winter. In the absence of measurable growth, these high nitrogen incorporation rates may indicate a large reproductive effort, or substantial turnover of somatic tissue nitrogen. The annual total assimilation ofSpartina-derived nitrogen was equal to theLittorina-nitrogen biomass. Assimilation of nitrogen in the presence of livingSpartina material (dead material removed) was reduced substantially below that in the presence of intact plants (living and dead material present).Littorina populations at abundances found in Georgia would assimilate ca 3.4% of above-groundSpartina-nitrogen production annually in high-marsh, short-Spartina areas. Based on preliminary estimates of nitrogen assimilation efficiency, 13.2 to 27.2% of short-Spartina production could be ingested annually by Georgia populations ofLittorina. Most of this ingestion would be concentrated in the summer and early fall, when monthly ingestion could equal 100% of deadSpartina biomass. The impact of grazing byLittorina onSpartina decomposition may be greatest on these early-senescing leaves. Grazing may have little impact on the early stages of decomposition of the bulk of the shoots that senesce later in fall, but may be important in the later stages of decomposition of dead shoots that persist through winter until the following spring and summer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Alexander, S. K. (1976). Relationship of macrophyte detritus to the salt marsh periwinkle,Littorina irrorata Say. Ph.D. Thesis, Louisiana State University, Baton rouge

    Google Scholar 

  • Alexander, S. K. (1979). Diet of the periwinkleLittorina irrorata in a Louisiana salt marsh. Gulf Res. Rep. 6: 293–295

    Google Scholar 

  • Anderson, C. E. (1974). A review of structure in several North Carolina salt marsh plants. In: Reimold, R. J., Queen, W. H. (eds.) Ecology of halophytes. Academic Press, N.Y., p. 307–344

    Google Scholar 

  • Baxter, D. A. (1983). The influence of habitat heterogeneity on the population ecology ofLittorina irrorata (Say), the salt marsh periwinkle. Ph.D. Dissertation, Duke University, North Carolina

    Google Scholar 

  • Bingham, F. O. (1972). The influence of environmental stimuli on the direction of movement of the supralittoral gastropodLittorina irrorata. Bull. mar. Sci. 22: 309–335

    Google Scholar 

  • Cammen, L. M., Seneca, E. D., Stroud, L. M. (1980). Energy flow through the fiddler crabsUca pugnax andU. minax and the marsh periwinkleLittorina irrorata in a North Carolina salt marsh. Am. Midl. Nat. 103: 238–250

    Google Scholar 

  • Chalmers, A. G. (1979). The effects of fertilization on nitrogen distribution in aSpartina alterniflora salt marsh. Estuar. cstl mar. Sci. 8: 327–337

    Google Scholar 

  • Connor, V. M., Quinn, J. F. (1984). Stimulation of food species growth by limpet mucus. Science, N.Y. 225: 843–844

    Google Scholar 

  • Crist, R. W., Banta, W. C. (1983). Distribution of the marsh periwinkleLittorina irrorata (Say) in a Virginia salt marsh. Gulf Res. Rep. 7: 225–235

    Google Scholar 

  • Dame, R. F., Kenny, P. D. (1986). Variability ofSpartina alterniflora primary production in the euhaline North Inlet estuary. Mar. Ecol. Prog. Ser. 32: 71–80

    Google Scholar 

  • Fallon, R. D., Newell, S. Y., Groene, L. C. (1985). Phylloplane algae of standing deadSpartina alterniflora. Mar. Biol 90: 121–127

    Google Scholar 

  • Fiedler, R., Proksch, G. (1975). The determination of N-15 by emission and mass spectrometry in biochemical analysis: a review. Analytica. chim. Acta 78: 1–62

    Google Scholar 

  • Hall, J. R. (1973). Intraspecific trail-following in the marsh periwinkleLittorina irrorata Say. Veliger 16: 72–75

    Google Scholar 

  • Hamilton, P. V. (1977a). Daily movements and visual location of plant stems byLittorina irrorata (Mollusca: Gastropoda). Mar. behav. Physiol. 4: 293–304

    Google Scholar 

  • Hamilton, P. V. (1977b). The use of mucous trails in gastropod orientation studies. Malac. Rev. 10: 73–76

    Google Scholar 

  • Hopkinson, C., Kipp, S., Stevenson, J. (1988). Nitrogen pools and turnover times in a tropical seagrass meadow, Terminos Lagoon. In: Yanez-Arancibia, A., Day, J. (eds.) Ecology of coastal ecosystems in the southern Gulf of Mexico: the Terminos Lagoon region, University Nacional Autonoma de Mexico Press, Ciudad Universitaria, Mexico, p. 171–180

    Google Scholar 

  • Hopkinson, C., Sherr, B., Ducklow, H. (1987). Microbial regeneration of ammonium in the water column of Davies Reef, Australia. Mar. Ecol. Prog. Ser. 41: 147–153

    Google Scholar 

  • Hopkinson, C. S., Schubauer, J. P. (1984). Static and dynamic aspects of nitrogen cycling in the salt marsh gramminoid,Spartina alterniflora Loisel. Ecology 65: 961–969

    Google Scholar 

  • Lopez, G. R., Levinton, J. S. (1987). Ecology of deposit-feeding animals in marine sediments. Q. Rev. Biol. 62: 235–259

    Google Scholar 

  • Marples, T. G. (1966). A radionuclide study of arthropod food chains in aSpartina salt marsh ecosystem. Ecology 47: 270–277

    Google Scholar 

  • McBride, C. J., Williams, A. H. (1987). The importance ofSpartina alterniflora toLittorina irrorata's growth and mortality. Benthic Ecology Meeting Abstracts, University N. Carolina, Raleigh

    Google Scholar 

  • McBride, C. J., Williams, A. H., Henry, R. P. (1989). Effects of temperature on climbing behavior ofLittorina irrorata: on avoiding a hot foot. Mar. behav. Physiol. 14: 93–100

    Google Scholar 

  • McKee, K. L., Seneca, E. D. (1982). The influence of morphology in determining the decomposition of two salt marsh macrophytes. Estuaries 5: 302–309

    Google Scholar 

  • Newell, S. Y., Fallon, R. D., Miller, J. D. (1989). Decomposition and microbial dynamics for standing, naturally positioned leaves of a salt marsh grassSpartina alterniflora. Mar. Biol. 101: 471–481

    Google Scholar 

  • Odum, E. P., De la Cruz, A. A. (1967). Particulate organic detritus in a Georgia salt marsh estuarine ecosystem. In: Lauff, G. H. (ed.) Estuaries. Publs Am. Ass. Adunt Sci. (N.Y.) 83: 383–388

    Google Scholar 

  • Rice, D. L. (1982). The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar. Ecol. Prog. Ser. 9: 153–162

    Google Scholar 

  • Robertson, A. I., Mann, K. H. (1982). Population dynamics and life history adaptations ofLittorina neglecta Bean in an eelgrass meadow (Zostera marine L.) in Nova Scotia. J. exp. mar. Biol. Ecol. 63: 151–171

    Google Scholar 

  • Schubauer, J. P., Hopkinson, C. S. (1984). Above and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnol. Oceanogr. 29: 1052–1065

    Google Scholar 

  • Shirley, T. C., Denoux, G. J., Stickle, W. B. (1978). Seasonal respiration in the marsh periwinkle,Littorina irrorata. Biol. Bull. mar. biol. Lab., Woods Hole 154: 322–334

    Google Scholar 

  • Smalley, A. E. (1958). The role of two invertebrate populations,Littorina irrorata andOrchelimum fificinium, in the energy flow of a salt marsh. Ph.D. Thesis, University Georgia, Athens

    Google Scholar 

  • Sokal, R. R., Rohlf, F. J. (1981). Biometry. The principles and practise of statistics in biological research. 2nd ed. W. H. Freeman & Co., New York

    Google Scholar 

  • Stiven, A. E., Hunter, J. T. (1976). Growth and mortality ofLittorina irrorata Say in three North Carolina marshes. Chesapeake Sci. 17: 168–176

    Google Scholar 

  • Stiven, A. E., Kuenzler, E. J. (1979). The response of two salt marsh molluscs,Littorina irrorata andGeukensia demissa, to field manipulations of density andSpartina litter. Ecol. Monogr. 49: 151–171

    Google Scholar 

  • Teal, J. M. (1962). Energy flow in the salt marsh ecosystem of Georgia. Ecology 43: 614–624

    Google Scholar 

  • Tenore, K. R., Cammen, L. M., Findlay, S. E., Phillips, N. W. (1982). Factors regulating availability of detritus to macroconsumers are related to source of detritus. J. mar. Res. 40: 473–490

    Google Scholar 

  • Tenore, K. R., Rice, D. L. (1980). A review of trophic factors affecting secondary production of deposit-feeders. In: Tenore, K. R., Coull, B. C. (eds.) Marine benthic dynamics. University South Carolina Press, Columbia, p. 325–340

    Google Scholar 

  • Torzilli, A. P., Andrykovitch, G. (1986). Degradation ofSpartina lignocellulose by individual and mixed cultures of salt-marsh fungi. Can. J. Bot. 64: 2211–2215

    Google Scholar 

  • Valiela, I., Teal, J. M., Allen, S. D., van Etten, R., Goehringer, D., Volkman, S. (1985). Decomposition in salt marsh ecosystems: the phases and major factors affecting disappearance of above ground organic matter. J. exp. mar. Biol. Ecol. 89: 29–54

    Google Scholar 

  • Warren, J. H. (1985). Climbing as an avoidance behavior in the salt marsh periwinkle,Littorina irrorata (Say). J. exp. mar. Biol. Ecol. 89: 11–28

    Google Scholar 

  • Wilson, J. O., Buchsbaum, R., Valiela, I., Swain, T. (1986a). Decomposition in salt marsh ecosystems: phenolic dynamics during decay of litter ofSpartina alterniflora. Mar. Ecol. Prog. Ser. 29: 177–187

    Google Scholar 

  • Wilson, J. O., Valiela, I., Swain, T. (1986b). Carbohydrate dynamics during decay of litter ofSpartina alterniflora. Mar. Biol. 92: 277–284

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kemp, P.F., Newell, S.Y. & Hopkinson, C.S. Importance of grazing on the salt-marsh grassSpartina alterniflora to nitrogen turnover in a macrofaunal consumer,Littorina irrorata, and to decomposition of standing-deadSpartina . Mar. Biol. 104, 311–319 (1990). https://doi.org/10.1007/BF01313273

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313273

Keywords

Navigation