Skip to main content
Log in

Magnetooptik und elektronische Struktur der magnetisch ordnenden Europiumchalkogenide

Magnetooptics and electronic structure of the magnetic ordering europium chalcogenides

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The absorption coefficient and the interband Faraday rotation of EuS, EuSe and EuTe thin films have been measured as function of the photon energy (1–6 eV), the temperature (2.7–300 K) and the applied magnetic field (0–11.5 kOe). In addition a magnetic field modulation technique has been developed, with a resolution of 2 ⋅ 10−4 deg. This allows the measurement of the Faraday rotation in fields of only 100 Oe, which is important for metamagnetic samples with low critical fields.

A Kramers-Kronig transformation of the Faraday rotation leads to the circular dichroism and from these two quantities and the optical constants the off-diagonal elements of the conductivity tensor have been computed. From a comparison of this experimental result with values obtained from a modified atomic model, we deduce the character of the involved transitions and the spin polarization of the occupied ground states (4f 7,p(anion)). In addition the ratio of exchange splitting to band width of the empty 5d final state can be evaluated. The fine structure of the first main peak is discussed in terms of Kasuya's coupling scheme between the 4f 6 multiplett and the excited 5d electron. In the antiferromagnetic EuTe the temperature dependence of the Faraday rotation does not follow the net magnetization of the sample for all photon energies, but some transitions show a “ferromagnetic” behavior. This is interpreted in Slater's model of the magnetic Brillouin zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Faraday, M.: Phil. Trans.136, 1 (1846)

    Google Scholar 

  2. Mathias, B.T., Bozorth, R.M., van Vleck, J.H.: Phys. Rev. Letters7, 160 (1961)

    Google Scholar 

  3. Busch, G., Junod, P., Risi, M., Vogt, O.: Proc. Intern. Conference Semiconductors, Exeter, 727 (1962)

  4. MacGuire, T.R., Argyle, B.E., Shafer, M.W., Smart, J.S.: Appl. Phys. Letters1, 17 (1962)

    Google Scholar 

  5. van Houten, S.: Phys. Letters2, 215 (1962)

    Google Scholar 

  6. Methfessel, S., Mattis, D.C.: Hdb. der Physik, Flügge Bd. 18, I. Berlin-Heidelberg-New York: Springer 1968

    Google Scholar 

  7. Wachter, P.: CRC Crit. Rev. Solid State Sciences3, 189 (1972)

    Google Scholar 

  8. Schoenes, J., Wachter, P.: Phys. Rev. B9, 3097 (1974)

    Google Scholar 

  9. Bennett, H.S., Stern, E.A.: Phys. Rev. A137, 448 (1965)

    Google Scholar 

  10. Smith, D.Y.: Intern. Symposium on Color Centers in Alkali Halide. Rome 1968

  11. Mort, J., Lüty, F., Brown, F.C.: Phys. Rev. A137, 566 (1965)

    Google Scholar 

  12. Becquerel, H.: C.R.125, 679 (1897)

    Google Scholar 

  13. Darwin, G.G.: Proc. Roy. Soc. A112, 314 (1926)

    Google Scholar 

  14. Schütz, W.: Hdb. der Experimentalphysik XVI, 1. Leipzig: Akad. Verlagsges. 1936

    Google Scholar 

  15. Moss, T.S.: Optical properties of Semiconductors. London: Butterworth Scientic Publications 1959

    Google Scholar 

  16. Lüty, F., Mort, J.: Phys. Rev. Letters12, 45 (1964)

    Google Scholar 

  17. Boccara, A.C., Briat, B.: J. Physique30, 445 (1969)

    Google Scholar 

  18. Ferré, J., Boccara, A.C., Briat, B.: J. Physique31, 631 (1970)

    Google Scholar 

  19. Lax, B., Nishina, Y.: Phys. Rev. Letters6, 464 (1961)

    Google Scholar 

  20. Kolodziejczak, J., Lax, B., Nishina, Y.: Phys. Rev.128, 2655 (1962)

    Google Scholar 

  21. Halpern, J., Lax, B., Nishina, Y.: Phys. Rev. A134, 140 (1964)

    Google Scholar 

  22. Boswarva, I.M., Howard, R.E., Lidiard, A.D.: Proc. Roy. Soc. A269, 125 (1962)

    Google Scholar 

  23. Mavroides, J.G.: In: F. Abelès, Optical properties of solids. Amsterdam-London: North-Holland 1972

    Google Scholar 

  24. Piller, H.: In: Willardson and Beer, Semiconductors and Semimetals Vol. 8. New York-London: Academic Press 1972

    Google Scholar 

  25. Schoenes, J.: Dissertation ETH Zürich 1974

  26. Erskine, J.L., Stern, E.A.: Phys. Rev. B8, 1238 (1973)

    Google Scholar 

  27. Hulme, H.R.: Proc. Roy. Soc. A135, 237 (1932)

    Google Scholar 

  28. Argyres, P.N.: Phys. Rev.97, 334 (1955)

    Google Scholar 

  29. Slater, J.C.: Phys. Rev.49, 537, 931 (1936);52, 198 (1937)

    Google Scholar 

  30. Stoner, E.C.: Proc. Roy. Soc. A165, 372 (1938); A169, 339 (1939)

    Google Scholar 

  31. Schoenes, J., Wachter, P., Rys, F.: Solid State Commun.15, 1891 (1974)

    Google Scholar 

  32. Busch, G., Sattler, K., Siegmann, H.C.: Proc. Intern. Conf. Magnetism, Moscow 1973

  33. Spicer, W.E.: In: F. Abelès, Optical Properties of Solids. Amsterdam-London: North-Holland 1972

    Google Scholar 

  34. Erskine, J.L., Stern, E.A.: Phys. Rev. Letters30, 1329 (1973)

    Google Scholar 

  35. Tolansky, S.: Multiple Beam Interferometry. Oxford: Clarendon Press 1948

    Google Scholar 

  36. Kaldis, E., Simanowskis, A.: wird publiziert

  37. Muheim, J.: Private Mitteilung

  38. Schwob, P., Everett, G.E.: J. Phys.32, C1–1066 (1971)

    Google Scholar 

  39. Schwob, P.: Private Mitteilung

  40. Kwon, T., Everett, G.E.: Intern. Conf. Magnetism, Moscow 1973

  41. Ingersoll, L.R., James, W.L.: Rev. Sci. Instr.24, 23 (1953)

    Google Scholar 

  42. Busch, G., Schoenes, J., Wachter, P.: Czech. J. Phys. B21, 570 (1971)

    Google Scholar 

  43. Suits, J.C.: Rev. Sci. Instr.42, 19 (1971)

    Google Scholar 

  44. Busch, G., Junod, P., Wachter, P.: Phys. Letters15, 822 (1964)

    Google Scholar 

  45. Argyle, B.E., Suits, J.C., Freiser, M.J.: Phys. Rev. Letters15, 822 (1965)

    Google Scholar 

  46. Suits, J.C., Argyle, B.E.: J. Appl. Phys.36, 1251 (1965)

    Google Scholar 

  47. Methfessel, S.: Z. Angew. Phys.18, 414 (1965)

    Google Scholar 

  48. Methfessel, S., Holtzberg, F., McGuire, T.R.: IEEE Trans. Mag.2, 31 (1966)

    Google Scholar 

  49. Wild, R.W., Shinmei, M., Anderson, A.L.: Proc. IX Conf. Phys. Semiconductors2, 1191 (1968)

    Google Scholar 

  50. Feinleib, J., Scouler, W.J., Dimmock, J.O., Hanus, J., Reed, T.B., Pidgeon, C.R.: Phys. Rev. Letters22, 1385 (1969)

    Google Scholar 

  51. Feinleib, J., Pidgeon, C.R.: Phys. Rev. Letters23, 1391 (1969)

    Google Scholar 

  52. Pidgeon, C.R., Feinleib, J., Scouler, W.J., Dimmock, J.O., Reed, T.B.: IBM JA14, 3, 309 (1970)

    Google Scholar 

  53. Güntherodt, G., Schoenes, J., Wachter, P.: J. Appl. Phys.41, 1083 (1970)

    Google Scholar 

  54. Güntherodt, G., Wachter, P., Imboden, D.: Phys. Kondens. Mat.12, 292 (1971)

    Google Scholar 

  55. Suryanarayanan, R.: Dissert. Univ. de Paris-Sud (1973) und dort zitierte Arbeiten

  56. Wachter, P.: Phys. Kondens. Mat.8, 80 (1968)

    Google Scholar 

  57. Verreault, R.: Solid State Commun.7, 1653 (1969)

    Google Scholar 

  58. Freiser, M.J., Holtzberg, F., Methfessel, S., Petit, G.D., Shafer, M.W., Suits, J.C.: H.P.A.41, 832 (1968)

    Google Scholar 

  59. Suryanarayanan, R., Paparoditis, C.: Conf. C.N.R.S. Les éléments des terres rares180, 149 (1970)

    Google Scholar 

  60. Greenaway, D., Harbeke, G.: Optical Properties and Band Structure of Semiconductors. Oxford-London-New York: Pergamon Press 1968

    Google Scholar 

  61. Urbach, F.: Phys. Rev.92, 1324 (1953)

    Google Scholar 

  62. Martiensen, W.: J. Phys. Chem. Solids8, 294 (1959)

    Google Scholar 

  63. Dutton, D.: Phys. Rev.112, 785 (1958)

    Google Scholar 

  64. Siemsen, K.J., Fenton, E.W.: Phys. Rev.161, 632 (1967)

    Google Scholar 

  65. Davis, E.A., Mott, N.F.: Phil. Mag.22, 903 (1970)

    Google Scholar 

  66. Mahr, H.: Phys. Rev.125, 1510 (1962)

    Google Scholar 

  67. Dow, J., Redfield, D.: Phys. Rev. B5, 594 (1972)

    Google Scholar 

  68. Axe, J.D.: J. Phys. Chem. Solids30, 1403 (1969)

    Google Scholar 

  69. Güntherodt, G., Wachter, P.: AIP Conference Proc.10, 1284 (1973)

    Google Scholar 

  70. Tu, K.N., Ahn, K.Y., Suits, J.C.: IEEE Trans. Magnetics MAG.8, 651 (1972)

    Google Scholar 

  71. Ahn, K.Y., Shafer, M.W.: IEEE Trans. Magnetics MAG.7, 394 (1971)

    Google Scholar 

  72. Wachter, P.: Habilitationsschrift ETH Zürich 1969, unveröffentlicht

  73. Zollweg, R.J.: Phys. Rev.111, 113 (1958)

    Google Scholar 

  74. Busch, G., Wachter, P.: Phys. Kondens. Mat.5, 232 (1966)

    Google Scholar 

  75. Rys, F., Helman, J.S., Baltensperger, W.: Phys. Kondens. Mat.6, 105 (1967)

    Google Scholar 

  76. Kambara, T., Tanabe, Y.: J. Phys. Soc. Jap.28, 628 (1970)

    Google Scholar 

  77. Russell, H.N., Abertson, W., Davis, D.N.: Phys. Rev.60, 641 (1941)

    Google Scholar 

  78. Yanase, A., Kasuya, T.: J. Phys. Soc. Jap.25, 1025 (1968)

    Google Scholar 

  79. Kasuya, T.: CRC Crit. Rev. Solid State Sciences3, 131 (1972)

    Google Scholar 

  80. Güntherodt, G.: Phys. cond. Matter18, 37 (1974)

    Google Scholar 

  81. Streit, P.: Phys. Kondens. Mat.15, 284 (1973)

    Google Scholar 

  82. Dimmock, J.O.: IBM JA14, 301 (1970)

    Google Scholar 

  83. Freiser, M.J., Methfessel, S., Holtzberg, F.: J. Appl. Phys.39, 900 (1968)

    Google Scholar 

  84. Cho, S.J.: Phys. Rev.157, 632 (1967) and1 B, 4589 (1970)

    Google Scholar 

  85. Lendi, K.: Phys. cond. Matter17, 189 and 215 (1974)

    Google Scholar 

  86. Pidgeon, C.R., Feinleib, J., Scouler, W.J., Hanus, J., Dimmock, J.O., Reed, T.B.: Sol. State Commun.7, 1323 (1969)

    Google Scholar 

  87. Pidgeon, C.R., Feinleib, J., Reed, R.B.: Solid State Comm.8, 1711 (1970)

    Google Scholar 

  88. Wachter, P., Weber, P.: Solid State Commun.8, 1133 (1970)

    Google Scholar 

  89. Ferré, J., Briat, B., Paparoditis, C., Pokrzywnicki, S., Suryanarayanan, R.: Solid State Comm.11, 1173 (1972)

    Google Scholar 

  90. Goodenough, J.B.: Magnetism and Chemical Bond. New York: J. Wiley 1963

    Google Scholar 

  91. Griffith, J.S.: The theory of transition-metal ions. Cambridge: University Press 1961

    Google Scholar 

  92. Ferré, J., Billardon, M., Briat, B.: Phys. Stat. Sol. (b)44, 345 (1971)

    Google Scholar 

  93. Dimmock, J.O., Hanus, J., Feinleib, J.: J. Appl. Phys.41, 1088 (1970)

    Google Scholar 

  94. Shen, Y.R.: Phys. Rev.134, A661 (1964)

    Google Scholar 

  95. Shen, Y.R., Bloembergen, N.: Phys. Rev.133, A515 (1964)

    Google Scholar 

  96. Ferré, J., Billardon, M., Badoz, J., Suryanarayanan, R., Paparoditis, C.: J. Physique32, C1–930 (1971)

    Google Scholar 

  97. Yanase, Y., Kasuya, T.: Prog. Theor. Phys. Suppl.46, 388 (1970)

    Google Scholar 

  98. Busch, G., Campagna, M., Siegmann, H.C.: Intern. J. Magnetism4, 25 (1973)

    Google Scholar 

  99. Dillon, J.F., Jr.: J. Appl. Phys.39, 922 (1968)

    Google Scholar 

  100. Griessen, R., Landolt, M., Ott, H.R.: Solid State Comm.9, 2219 (1971)

    Google Scholar 

  101. Schwob, P.: Phys. Kondens. Mat.10, 186 (1969)

    Google Scholar 

  102. Schoenes, J., Wachter, P.: HPA43, 477 (1970)

    Google Scholar 

  103. Busch, G., Schoenes, J., Wachter, P.: Sol. State Commun.8, 1841 (1971)

    Google Scholar 

  104. Busch, G., Junod, P., Schwob, P., Vogt, O., Hulliger, F.: Phys. Letters9, 7 (1964)

    Google Scholar 

  105. Oliveira, N.F., Jr., Foner, S., Shapira, Y.: Phys. Letters33A, 153 (1970)

    Google Scholar 

  106. Battles, J.W., Everett, G.E.: Phys. Rev. B1, 3021 (1970)

    Google Scholar 

  107. McGuire, T.R., Shafer, M.W.: J. Appl. Phys.35, 984 (1964)

    Google Scholar 

  108. Wojtowicz, P.J., Rayl, M.: Phys. Rev. Letters20, 1489 (1968)

    Google Scholar 

  109. Ho, J.T., Litster, J.D.: Rev. Sc. Instr.42, 19 (1971)

    Google Scholar 

  110. Slater, J.C.: Phys. Rev.82, 538 (1951)

    Google Scholar 

  111. Cotti, P., Munz, P.: Phys. cond. Matter17, 307 (1974)

    Google Scholar 

  112. Herman, F., Skillman, S.: Atomic Structure Calculation. New Jersey: Prentice Hall 1963 (nur Atome!). Wellenfunktionen für die Ionen Eu2+ und S−- wurden unseres Wissens bisher nicht publiziert. Der Wert des2-Zentrenüberlappungsintegral hängt jedoch stark vom kernfernen Verhalten der Wellenfunktionen ab. Da zusätzlich für diepd-Übergänge die Bandbreite quadratisch in 〈σ xy 〉 eingeht, können in diesem besonderen Fall die angegebenen Werte [31] nur Größenordnungen wiederspiegeln. Eine Berechnung des Integrals mit 5d(Eu2+)- und 3p(S−-)-Wellenfunktionen ist in Vorbereitung (Bagus, P.: Private Mitteilung)

  113. Busch, G., Cotti, P., Munz, P.: Solid State Commun.7, 795 (1969)

    Google Scholar 

  114. Eastman, D.E., Holtzberg, F., Methfessel, S.: Phys. Rev. Letters23, 226 (1969)

    Google Scholar 

  115. Arend, H., Schoenes, J., Wachter, P.: Proc. of the 12th Intern. Conf. on the Phys. of Semiconductors, Stuttgart 936 (1974)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schoenes, J. Magnetooptik und elektronische Struktur der magnetisch ordnenden Europiumchalkogenide. Z Physik B 20, 345–368 (1975). https://doi.org/10.1007/BF01313205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313205

Navigation