Skip to main content
Log in

Sources of loss processes in phonon generation and detection experiments with superconducting tunneling junctions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Observing the phonon yield, i.e. the ratio of the experimental phonon signal amplitude and the corresponding calculated value, phonon losses within the generation-detection system can be localized and determined quantitatively. With tin junctions on pure silicon substrates immersed in liquid helium the phonon yield is 3–5%. Under vacuum conditions the yield rises to 10–12% indicating strong phonon transmission to the helium bath. The experimental lifetime for 280 GHz phonons in the silicon substrate is longer than 65 µs indicating negligible volume losses and losses at the free substrate surface. It is further shown, that volume losses inside the phonon generator and detector are small compared to the total loss of about 90%. By phonon reverberation measurements we find evidence that the main sources for phonon losses are localized at the boundaries of the tunneling junctions to the substrate. This is supported by an increase of the phonon yield with improved polishing from about 9% (mechanical), 10% (chemical) to 12% (sputter etching). A SIMS analysis indicates the presence of carbonhydrates and probably of water in the boundaries. This layer of extraneous molecules together with the nonideal surface structure of the substrate and the evaporated films weakens the mechanical bonding between the tunnel junctions and the substrate and is possibly causing strong phonon splitting by anharmonic forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenmenger, W., Dayem, A.H.: Phys. Rev. Lett.18, 125 (1967)

    Google Scholar 

  2. Eisenmenger, W.: In: Tunneling Phenomena in Solids (ed. E. Burstein, S. Lundquist). New York: Plenum Press 1969

    Google Scholar 

  3. Eisenmenger, W.: In: Physical Acoustics, Bd. XII, 1976 (ed. W.P. Mason and R. Thurston)

  4. Eisenmenger, W., Laßmann, K., Trumpp, H.J., Krauß, R.: Journ. of Appl. Phys.11, 307 (1976)

    Google Scholar 

  5. Eisenmenger, W., Laßmann, K., Trumpp, H.J., Krauß, R.: Appl. Phys.12, 163 (1977)

    Google Scholar 

  6. Rothwarf, A., Taylor, B.N.: Phys. Rev. Lett.19, 27 (1967)

    Google Scholar 

  7. Trumpp, H.J., Laßmann, K., Eisenmenger, W.: Phys. Lett.41 A, 431 (1972)

    Google Scholar 

  8. Trumpp, H.J., Epperlein, P.W., Laßmann, K.: Journal de Physique C4 suppl. au N° 10, C-29 (1972)

    Google Scholar 

  9. Kinder, H., Laßmann, K., Eisenmenger, W.: Phys. Lett.31 A, 475 (1970)

    Google Scholar 

  10. Dayem, A.H., Wiegand, J.J.: Phys. Rev. B5, 4390 (1972)

    Google Scholar 

  11. Welte, M., Laßmann, K., Eisenmenger, W.: Journal de Physique33, C4–25 (1972)

    Google Scholar 

  12. Forkel, W., Welte, M., Eisenmenger, W.: Phys. Rev. Lett.31, 215 (1973)

    Google Scholar 

  13. Welte, M.: Thesis, Phys. Inst. Univ. Stuttgart, 1976 (unpublished)

  14. Kinder, H.: Phys. Rev. Lett.28, 1564 (1972)

    Google Scholar 

  15. Trumpp, H.J.: Thesis, Phys. Inst., Univ. Stuttgart, 1976 (unpublished)

  16. Little, W.A.: Can. Journ. Phys.37, 334 (1959)

    Google Scholar 

  17. Khalatnikow, I.M.: Zh. éksp. teor. Fiz.22, 687 (1952)

    Google Scholar 

  18. Taylor, B., Maris, H.J., Elbaum, C.: Phys. Rev. Lett.23, 416 (1969)

    Google Scholar 

  19. Elbaum, C.: Intern. Conf. on Phonon Scattering in Solids (ed. H.J. Albany). 3–6 July 1972, Paris

  20. Rösch, F., Weis, O.: Z. Physik B25, 115 (1976)

    Google Scholar 

  21. Weis, O.: Z. Angew. Phys.26, 325 (1969)

    Google Scholar 

  22. Orbach, R., Vredevoe, L.A.: Physics1, 91 (1964)

    Google Scholar 

  23. Klemens, P.G.: J. Appl. Phys.38, 4573 (1967)

    Google Scholar 

  24. Holland, M.G.: IEEE Transactions on Sonics and Ultrasonics1 (Suppl. 15), 18 (1968)

    Google Scholar 

  25. Bobetic, V.M.: Phys. Rev.136, 1535 (1964)

    Google Scholar 

  26. Dayem, A.H., Miller, B.I., Wiegand, J.J.: Phys. Rev. B3, 2949 (1971)

    Google Scholar 

  27. Weis, O.: Private Communication

  28. Kapitza, P.L.: Zh. éksp. teor. Fiz.11, 1 (1941), J. Phys. Moscow4, 181 (1941)

    Google Scholar 

  29. Toombs, G.A., Challis, L.J.: Journ. Phys. C4, 1085 (1970)

    Google Scholar 

  30. Haug, H., Weiss, K.: Phys. Lett.40A, 19 (1972)

    Google Scholar 

  31. Vuorio, M.: Journ. of Low Temp. Phys.10, 781 (1973)

    Google Scholar 

  32. Vuorio, M.: Journ. Phys. C5, 1216 (1972)

    Google Scholar 

  33. Peterson, R.E., Anderson, A.C.: Journ. of Low Temp. Phys.11, 639 (1973)

    Google Scholar 

  34. Böhm, K.: Diplomarbeit, Phys. Inst. Univ. Stuttgart 1975 (unpublished)

  35. Day, W.: Journal de Physique, suppl au N° 10, C4–65 (1972)

    Google Scholar 

  36. Rolcke, R.: Thesis, Phys. Inst., Univ. Stuttgart, 1977 (unpublished)

  37. Forkel, W.: Thesis, Phys. Inst., Univ. Stuttgart, 1977 (unpublished)

  38. Herth, P., Weis, O.: Z. Angew. Phys.29, 101 (1970)

    Google Scholar 

  39. Kappus, W., Weis, O.: Appl. Phys.44, 1947 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trumpp, H.J., Eisenmenger, W. Sources of loss processes in phonon generation and detection experiments with superconducting tunneling junctions. Z Physik B 28, 159–171 (1977). https://doi.org/10.1007/BF01313038

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313038

Keywords

Navigation