Skip to main content
Log in

Numerical studies on the Anderson localization problem

III. Universality classes and magnetoresistance in two dimensions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The localization properties of three different gauge invariant disordered electronic systems are studied by numerical methods with the purpose to clarify their localization properties and to evaluate the dc-resistivity atT=0 K as far as possible. The three different models, two of which involve also spin-dependent scattering processes, represent three different universality classes, corresponding to orthogonal, unitary, and symplectic matrix ensembles, respectively, in a field-theoretic representation. For the symplectic case, which corresponds to a situation with dominating spin-orbit scattering, we find hints for an unconventional transition, separating weakly antilocalized from exponentially localized states, whereas in the other two cases instead of a sharp transition only a drastic crossover between weak localization and exponential localization seems to happen. For the symplectic model also the magnetoresistivity is calculated; we find a negative magnetoresistivity if the Zeeman splitting is neglected, whereas by inclusion of Zeeman splitting the magnetoresistivity is positive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stein, J., Krey, U.: Z. Phys. B — Condensed Matter34, 287 (1981)

    Google Scholar 

  2. Stein, J., Krey, U.: Z. Phys. B — Condensed Matter37, 13 (1980)

    Google Scholar 

  3. Stein, J., Krey, U.: Physica106A, 326 (1981)

    ADS  Google Scholar 

  4. Stein, J., Krey, U.: Solid State Commun.36, 951 (1980)

    Article  Google Scholar 

  5. Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Phys. Rev. Lett.42, 673 (1979)

    Article  ADS  Google Scholar 

  6. Anderson, P.W., Abrahams, E., Ramakrishnan, T.V.: Phys. Rev. Lett.44, 1153 (1980)

    Article  Google Scholar 

  7. See e.g. Pepper, M.: In: Lecture Notes in Physics. Vol. 149, p. 177. Berlin, Heidelberg, New York: Springer Verlag 1981

    Google Scholar 

  8. Licciardello, D.C., Thouless, D.J.: Phys. Rev. Lett.35, 1475 (1975)

    Article  ADS  Google Scholar 

  9. Wegner, F.: In: Lecture Notes in Physics. Vol. 149, p. 191. Berlin, Heidelberg, New York: Springer Verlag 1981

    Google Scholar 

  10. Hikami, S., Larkin, A., Nagaoka, Y.: Prog. Theor. Phys.63, 707 (1980); As stressed in this paper, for strictly two-dimensional systems, in contrast to thin films of a width which is much larger than the Fermi wavelength, the symplectic case cannot be realized, since it is necessary that the orbital motion can have a component, which is in the normal direction

    Article  ADS  Google Scholar 

  11. Oppermann, R., Jüngling, K.: J. Phys. C14, 3745 (1981)

    Article  ADS  Google Scholar 

  12. Jüngling, K., Oppermann, R.: Z. Phys. B — Condensed Matter38, 93 (1980)

    Article  Google Scholar 

  13. Oppermann, R.: J. Phys. C14, 3757 (1981)

    Article  ADS  Google Scholar 

  14. One should note that the conductivity of a finite sample will depend erratically on the choice of this sample unless the measurements are either performed at a finite frequency ω or at a finite temperature, leading to a finite, inelastic lifetime τ1 of the eigenstates. To avoid this erratic dependence, ħω or ħ/τ1 should be much larger as the minimal spacing δE=(N d g(E))−1 of two eigenstates at the Fermi energy

  15. Hikami, S.: Prog. Theor. Phys.64, 1466 (1980)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  16. Gorkov, L.P., Larkin, A.I., Khmelnitzkii, D.E.: JETP Lett.30, 229 (1979)

    ADS  Google Scholar 

  17. Bergmann, G.: Private communication

  18. m>l means for the conventional arrangement of the square lattice that eitherm x>l x, or instead,m y>l y

  19. Lee, P.A., Fisher, D.S.: Phys. Rev. Lett.47, 882 (1982)

    Article  ADS  Google Scholar 

  20. Maekawa, S., Fukuyama, H.: J. Phys. Soc. Jpn.50, 2516 (1981)

    Article  Google Scholar 

  21. Economou, E.N., Cohen, M.H.: Phys. Rev. B5, 2931 (1972)

    Article  ADS  Google Scholar 

  22. One should note that the density of state vanishes only beyond the Lifshitz edgesE L;E L=4W 2 in casea, =8W 2 in casesb andc

  23. Altshuler, B.L., Aharonov, A.G., Lee, P.A.: Phys. Rev. Lett.44, 1288 (1980)

    Article  ADS  Google Scholar 

  24. Lee, P.A., Ramakrishnan, T.V.: Preprint

  25. Uren, M.J., Davies, R.A., Kaveh, M., Pepper, M.: J. Phys. C14, 5737 (1981)

    Article  ADS  Google Scholar 

  26. Pichard, J.L., Sarma, G.: Jpn. Phys. C14, L127 (1981)

    Article  ADS  Google Scholar 

  27. MacKinnon, A., Kramer, B.: Phys. Rev. Lett.47, 1546 (1981)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krey, U., Maaß, W. & Stein, J. Numerical studies on the Anderson localization problem. Z. Physik B - Condensed Matter 49, 199–208 (1982). https://doi.org/10.1007/BF01313027

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01313027

Keywords

Navigation