Skip to main content
Log in

Generalized Dyson-Maleev representation of doped and undoped Heisenberg antiferromagnets

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The doped and undoped Heisenberg antiferromagnet is described within a rigorous and unified theoretical framework based on ideas of Dyson. The unified description is achieved by means of a particular representation of the relevant operators, referred to as generalized Dyson-Maleev (DM) representation, where the kinematic constraints are fully taken into account by means of a projection operator. The latter, whose explicit analytic form is derived, commutes with the Hamiltonian, and its main effect is that the representation vanishes on the whole unphysical subspace. On the physical subspace, our representation is similar to that proposed by Schmitt-Rink et al., and coincides with the latter in the linear spin-wave approximation. In the absence of holes, the generalized DM representation properly reduces to the ordinary DM representation of spin-1/2 operators. One of the main results of our approach is that the projection operator has no effect on the eigenvalues, but does affect the eigenstates and, hence, expectation values and correlation functions. As in the original Dyson theory, there is thus a clear separation of kinematic and dynamic effects. Finally, the case of a single hole is treated in some detail. Guided by the formal similarity with the Fröhlich polaron model, the Hamiltonian is subject to a unitary transformation, which is the lattice version of the Jost transformation, well-known in polaron theory. The result of the transformation is that the Hamiltonian assumes diagonal form in the hole operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bednorz, J.G., Müller, K.A.: Z. Phys. B64, 189 (1986)

    Google Scholar 

  2. Shirane, G., Endoh, Y., Birgeneau, R.J., Kastner, M.A., Hidaka, Y., Oda, M., Suzuki, M., Murakami, T.: Phys. Rev. Lett.59, 1613 (1987)

    Google Scholar 

  3. Chao, K.A., Spałek, J., Oleś, A.M.: J. Phys. C10, L271 (1977); Gros, C., Joynt, R., Rice, T.M.: Phys. Rev. B36, 381 (1987)

    Google Scholar 

  4. Caspers, W.J., Iske, P.L.: Physica A157, 1033 (1989)

    Google Scholar 

  5. Brinkman, W.F., Rice, T.M.: Phys. Rev. B2, 1324 (1970)

    Google Scholar 

  6. Manousakis, E.: Rev. Mod. Phys.63, 1 (1991)

    Google Scholar 

  7. Bethe, H.: Z. Phys.71, 205 (1931)

    Google Scholar 

  8. Mattis, D.C.: The theory of magnetism. Vol. I. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  9. Anderson, P.W.: Phys. Rev.86, 694 (1952)

    Google Scholar 

  10. Kubo, R.: Phys. Rev.87, 568 (1952)

    Google Scholar 

  11. Oguchi, T.: Phys. Rev.117 117 (1960)

    Google Scholar 

  12. Weihong, Z., Oitmaa, J., Hamer, C.J.: Phys. Rev. B43, 8321 (1991)

    Google Scholar 

  13. Borovik-Romanov, A.S., Sinha, S.K. (eds.): Spin waves and magnetic excitations. Amsterdam: North-Holland 1988

    Google Scholar 

  14. Schmitt-Rink, S., Varma, C.M., Ruckenstein, A.E.: Phys. Rev. Lett.60, 2793 (1988)

    Google Scholar 

  15. Marsiglio, F., Ruckenstein, A.E., Schmitt-Rink, S., Varma, C.M.: Phys. Rev. B43, 10882 (1991)

    Google Scholar 

  16. Kane, C.L., Lee, P.A., Read, N.: Phys. Rev. B39, 6880 (1989)

    Google Scholar 

  17. Martinez, G., Horsch, P.: Phys. Rev. B44, 317 (1991)

    Google Scholar 

  18. Kuper, C.G., Whitfield, G.D. (eds): Polarons and excitons. Edingburgh: Oliver and Boyd 1962

    Google Scholar 

  19. Dyson, F.J.: Phys. Rev.102, 1217, 1230 (1956)

    Google Scholar 

  20. Izyumov, Yu.A.: Sov. Phys. Usp.34, 935 (1991) [Usp. Fiz. Nauk161, 1 (1991)]

    Google Scholar 

  21. Barentzen, H.: Phys. Lett. A156, 461 (1991)

    Google Scholar 

  22. Wróbel, P., Barentzen, H.: Phys. Lett. A162, 282 (1992)

    Google Scholar 

  23. Jost, R.: Phys. Rev.72, 815 (1947)

    Google Scholar 

  24. Itzykson, C., Zuber, J.-B.: Quantum field theory p. 208. New York: McGraw-Hill 1980

    Google Scholar 

  25. Tao Yuin: Chin. J. Phys.22, 357 (1966)

    Google Scholar 

  26. Cooke, J.F., Hahn, H.H.: Phys. Rev.184, 509 (1969)

    Google Scholar 

  27. Maleev, S.V.: Sov. Phys.-JETP6, 776 (1958) [Zh. Eksp. Teor. Fiz.33, 1010 (1957)]

    Google Scholar 

  28. Herbert, D.C.: J. Math. Phys.10, 2255 (1969)

    Google Scholar 

  29. Dembinski, S.T.: Physica30, 1217 (1964)

    Google Scholar 

  30. Ishikawa, T., Oguchi, T.: Progr. Theor. Phys.54, 1282 (1975)

    Google Scholar 

  31. Takahashi, M.: Progr. Theor. Phys. [Suppl.]87, 233 (1986) Phys. Rev. Lett.58, 168 (1987); Phys. Rev. B40, 2494 (1989)

    Google Scholar 

  32. Igarashi, J., Watabe, A.: Phys. Rev. B43, 13456 (1991); ibid.44, 5057 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barentzen, H., Wróbel, P. Generalized Dyson-Maleev representation of doped and undoped Heisenberg antiferromagnets. Z. Physik B - Condensed Matter 93, 375–388 (1994). https://doi.org/10.1007/BF01312709

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312709

PACS

Navigation