Skip to main content
Log in

Thermal-wave investigation of the ferroelectric phase transition in colemanite

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Thermal waves with penetration depths ranging from 150 μm to 3 μm and amplitudes smaller than 0.1 mK were used to investigate the ferroelectric phase transition in colemanite. The critical behavior of the pyroelectric current is found to be independent of the penetration depth. It agrees well with the prediction from mean field theory for the temperature derivative of the bulk order parameter. The results are discussed in terms of a possible application of the thermal wave method to the investigation of surface critical phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jona, F.P., Shirane, G.: Ferroelectric crystals. Oxford: Pergamon Press 1962

    Google Scholar 

  2. Blinc, R., Zeks, B.: Soft modes in ferroelectrics and antiferroelectrics. Amsterdam: North-Holland 1974

    Google Scholar 

  3. Als-Nielsen, J., Birgenau, R.J.: Am. J. Phys.45, 554 (1977)

    Google Scholar 

  4. Binder, K.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. 8, pp. 1–144. London: Academic Press 1983

    Google Scholar 

  5. Diehl, H.W.: In: Phase transitions and critical phenomena. Domb, C., Lebowitz, J.L. (eds.), Vol. 10, pp. 75–267 London: Academic Press 1986

    Google Scholar 

  6. Kretschmer, R., Binder, K.: Phys. Rev. B20, 1065 (1979)

    Google Scholar 

  7. Bjerkan, L., Fossheim, K.: Solid State Commun.21, 1147 (1977)

    Google Scholar 

  8. Höchli, U.T., Rohrer, H.: Phys. Rev. Lett.48, 188 (1982)

    Google Scholar 

  9. Busse, G.: IEEE Trans. Sonics Ultrason.32, 355 (1985)

    Google Scholar 

  10. Sullivan, P.F., Seidel, G.: Phys. Rev.173, 679 (1968)

    Google Scholar 

  11. Lang, S.B., Das-Gupta, D.K.: J. Appl. Phys.59, 2151 (1986)

    Google Scholar 

  12. Collins, R.E.: Rev. Sci. Instrum.48, 83 (1977)

    Google Scholar 

  13. Chynoweth, A.G.: J. Appl. Phys.27, 78 (1956)

    Google Scholar 

  14. Chynoweth, A.G.: Acta Crystallogr.10, 511 (1957)

    Google Scholar 

  15. Chynoweth, A.G.: Phys. Rev.117, 1235 (1960)

    Google Scholar 

  16. Kröner, E.: Z. Angew. Phys.7, 249 (1955)

    Google Scholar 

  17. Wagner, H., Horner, H.: Adv. Phys.23, 587 (1974)

    Google Scholar 

  18. Wagner, H., Swift, J.: Z. Phys.239, 182 (1970)

    Google Scholar 

  19. Carslaw, H.S., Jaeger, J.C.: Conduction of heat in solids. Oxford: Clarendon Press 1959

    Google Scholar 

  20. Wieder, H.H.: J. Appl. Phys.30, 1010 (1959)

    Google Scholar 

  21. Wieder, H.H., Clawson, A.R., Parkerson, C.R.: J. Appl. Phys.33, 1720 (1962)

    Google Scholar 

  22. Fatuzzo, E.: J. Appl. Phys.31, 1029 (1960)

    Google Scholar 

  23. This was first assigned to relaxational phenomena which, according to Blinc and Zeks [2], should occur around 110 kHz in colemanite. That value, however, later turned out to have been a misprint, since Brosowski et al. reported that these phenomena arose at 110 MHz! Brosowski, G., Luther, G., Peterson, J.: Z. Naturforsch. Teil A28, 1814 (1973)

    Google Scholar 

  24. Luther, G.: Phys. Status Solidi A20, 227 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fenzl, W., Schuppler, S. Thermal-wave investigation of the ferroelectric phase transition in colemanite. Z. Physik B - Condensed Matter 93, 343–348 (1994). https://doi.org/10.1007/BF01312705

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312705

PACS

Navigation