Skip to main content
Log in

Tangent modulus tensor in plasticity under finite strain

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The tangent modulus tensor, denoted as\(\mathfrak{D}\), plays a central role in finite element simulation of nonlinear applications such as metalforming. Using Kronecker product notation, compact expressions for\(\mathfrak{D}\) have been derived in Refs. [1]–[3] for hyperelastic materials with reference to the Lagrangian configuration. In the current investigation, the corresponding expression is derived for materials experiencing finite strain due to plastic flow, starting from yield and flow relations referred to the current configuration. Issues posed by the decomposition into elastic and plastic strains and by the objective stress flux are addressed. Associated and non-associated models are accommodated, as is “plastic incompressibility”. A constitutive inequality with uniqueness implications is formulated which extends the condition for “stability in the small” to finite strain. Modifications of\(\mathfrak{D}\) are presented which accommodate kinematic hardening. As an illustration,\(\mathfrak{D}\) is presented for finite torsion of a shaft, comprised of a steel described by a von Mises yield function with isotropic hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B:

strain displacement matrix

C=FTF:

Green strain tensor

\(\mathfrak{C},\mathfrak{C}_e ,\mathfrak{C}_p\) :

compliance matrix

D=(L+LT)/2:

deformation rate tensor

D :

fourth order tangent modulus tensor

\(\mathfrak{D},\mathfrak{D}_e ,\mathfrak{D}_p\) :

tangent modulus tensor (second order)

d :

VEC(D)

e :

VEC(ɛ)

E :

“Eulerian pseudostrain”

F, F e ,F p :

Helmholtz free energy

F=∂x/∂X:

deformation gradient tensor

f :

consistent force vector

ℊ:

residual function

G:

strain displacement matrix

h :

history vector

h :

time interval

H :

function arising in tangent modulus tensor

I, I 9 :

identity tensor

i :

VEC(I)

k 0,k 1 :

parameters of yield function

K g :

geometric stiffness matrix

K T :

tangent stiffness matrix

k k :

kinematic hardening coefficient

J :

Jacobian matrix

L=∂vx :

velocity gradient tensor

m :

unit normal vector to yield surface

M:

strain-displacement matrix

N:

shape function matrix

n :

unit normal vector to deformed surface

n 0 :

unit normal vector to undeformed surface

n :

unit normal vector to potential surface

r, R, R 0 :

radial coordinate

s :

VEC(δ)

S :

deformed surface

S 0 :

undeformed surface

t :

time

t, t 0 :

traction

t :

VEC(τ)

\(\mathop t\limits^ \circ\) :

VEC(τ\(\mathop \tau \limits^ \circ\))

t′:

VEC(τ′)

t r :

reference stress interior to the yield surface

t :

t−t r

T :

kinematic hardening modulus matrix

u=x−X :

displacement vector

U:

permutation matrix

v=∂x/∂t :

particle velocity

V :

deformed volume

V 0 :

undeformed volume

X :

position vector of a given particle in the undeformed configuration

x(X,t):

position vector in the deformed configuration

z, Z :

axial coordinate

γ:

vector of nodal displacements

ɛ=(FTF−I)/2:

Lagrangian strain tensor

η:

history parameter scalar

θ, Θ:

azimuthal coordinate

ϰ:

elastic bulk modulus

λ:

flow rule coefficient

Λ:

twisting rate coefficient

μ:

elastic shear modulus

ν:

iterate

σ:

Second Piola-Kirchhoff stress

τ:

Cauchy stress

\(\mathop \tau \limits^ \circ\) :

Truesdell stress flux

τ′:

deviatoric Cauchy stress

Y, Y′ :

yield function

ϕ:

residual function

Φ:

plastic potential

X, Xe, Xp :

second order tangent modulus tensors in current configuration

X′, Xe′, Xp′ :

second order tangent modulus tensors in undeformed configuration

δ(.):

variational operator

VEC(.):

vectorization operator

TEN(.):

Kronecker operator

tr(.):

trace

⊗:

Kronecker product

References

  1. Nicholson, D. W.: Tangent stiffness matrix for finite element analysis of hyperelastic materials. Acta Mech.112, 187–201 (1995).

    Google Scholar 

  2. Nicholson, D. W., Lin, B.: Finite element method for thermomechanical response of near-incompressible elastomers. Acta Mech.124, 181–198 (1997).

    Google Scholar 

  3. Nicholson, D. W., Nelson, N. W., Lin, B., Farinella, A.: Finite element analysis of hyperelastic components. Appl. Mech. Rev.51, 303–320 (1998).

    Google Scholar 

  4. Rowe, G. W.: Finite-element plasticity and metalforming analysis. Cambridge: Cambridge University Press 1991.

    Google Scholar 

  5. Hosford, W. F. et al.: Metal forming: mechanics and metallurgy, 2nd ed. Englewood Cliffs: Prentice Hall 1993.

    Google Scholar 

  6. Graham, A.: Kronecker products and matrix calculus with applications. Chichester: Ellis Horwood 1981.

    Google Scholar 

  7. Zienkiewicz, O., Taylor, C.: The finite element method, vol. II, 4th ed. New York: McGraw Hill 1991.

    Google Scholar 

  8. Prager, W.: The theory of plasticity: a survey of achievements. Proc. Inst. Mech. Eng.41, 1949.

  9. Naghdi, P.: Stress strain relations in plasticity and thermoplasticity. In: Plasticity — Proceedings of the Second Symposium on Naval Structural Mechanics. New York: Pergamon Press 1960.

    Google Scholar 

  10. Green, A. E., Naghdi, P.: A general theory of an elastic-plastic continuum. Arch. Rat. Mech. Anal.18, 251–281 (1965).

    Google Scholar 

  11. Lee, E. H.: Elastic plastic deformations at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  12. Nicholson, D. W.: On a stability criterion in non-associated viscoplasticity. Acta Mech.69, 167–175 (1987).

    Google Scholar 

  13. Nicholson, D. W.: On hardening and yield surface motion in plasticity. Acta Mech.21, 193–207 (1975).

    Google Scholar 

  14. Lubliner, J.: Plasticity theory. New York: MacMillan 1990.

    Google Scholar 

  15. Drucker, D. C.: A more fundamental approach to plastic stress-strain relations. In: Proc. 1st. U.S. Nat. Congr. Appl. Mech. (1951).

  16. Washizu, K.: Variational methods in elasticity and plasticity, 3rd ed. New York: Pergamon Press 1982.

    Google Scholar 

  17. Kleiber, M.: Incremental finite element modeling in non-linear solid mechanics. New York: Wiley 1989.

    Google Scholar 

  18. Eringen, A. C.: Nonlinear theory of continuous media. New York: McGraw Hill 1962.

    Google Scholar 

  19. Ellyin, F.: Fatigue damage, crack growth and life prediction. New York: Chapman and Hall 1997.

    Google Scholar 

  20. Hill, R.: Mathematical theory of plasticity. New York: Oxford University Press 1950.

    Google Scholar 

  21. Raniecki, B.: Uniqueness criteria in solids with non-associated plastic flow laws at finite deformation. Bull. Polonaise Acad. Sci.23, 261–286 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nicholson, D.W., Lin, B. Tangent modulus tensor in plasticity under finite strain. Acta Mechanica 134, 199–215 (1999). https://doi.org/10.1007/BF01312655

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312655

Keywords

Navigation