Skip to main content
Log in

Theoretical study of the effective electron mass in ternary chalcopyrite semiconductors in the presence of crossed electric and magnetic fields

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

An attempt is made to investigate theoretically the effective electron mass in ternary chalcopyrite semiconductors at low temperatures on the basis of a newly derived dispersion relation of the conduction electrons under cross fields for the more generalized case which occurs from the consideration of the various types of anisotropies in the energy spectrum. It is found, taking degeneraten-CdGeAs2 as an example, that the effective electron mass at the Fermi level along the direction of magnetic quantization depends on both the Fermi energy and the magnetic quantum number due to the combined influence of the crystal field splitting parameter and the anisotropic spin-orbit splitting parameter respectively, resulting in different effective masses at the Fermi level corresponding to different magnetic sub-bands. It is also observed that the same mass at the Fermi level in the direction normal to both magnetic and electric fields also varies both with Fermi energy and magnetic sub-band index, and the characteristic feature of cross-fields is to introduce the index-dependent oscillatory mass anisotropy. The theoretical results are in good agreement with the experimental observations as reported elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi, S.: J. Appl. Phys.58, R11 (1985)

    Google Scholar 

  2. Dornhaus, R., Nimtz, G.: Springer Tracts in Modern Physics Vol. 78, p. 1. Berlin, Heidelberg, New York: Springer 1976

    Google Scholar 

  3. Zawadzki, W.: Handbook of Semiconductor Physics. Paul, W. (ed.), Vol. 1, p. 719, Volume Amsterdam: North-Holland 1982

    Google Scholar 

  4. Tsidilkovski, I.M.: Cand. Thesis, Leningrad University, USSR 1955

    Google Scholar 

  5. Bass, F.G., Tsidilkovski, I.M.: Izv. Acad. Nauk Azerb. SSR10, 3 (1966)

    Google Scholar 

  6. Arora, V.K., Jeafarian, H.: Phys. Rev. B13, 4457 (1976)

    Google Scholar 

  7. Chakravarti, A.N., Ghatak, K.P., Dhar, A., Ghosh, K.K.: Czech. J. Phys. B33, 65 (1983)

    Google Scholar 

  8. Singh, M., Wallace, P.R., Jog, S.D., Erushanov, J.: J. Phys. Chem. Solids45, 409 (1984)

    Google Scholar 

  9. Madarsaz, F.L., Szmulowicz, F., MeBath, J.R.: J. Appl. Phys. (USA)58, 361 (1985)

    Google Scholar 

  10. Ghatak, K.P., Mondal, M.: Z. Naturforsch.41a, 881 (1986)

    Google Scholar 

  11. Mondal, M., Ghatak, K.P.: Phys. Status Solidi (b),123, K143 (1984)

    Google Scholar 

  12. Belovolov, M.I., Brandt, N.B., Vavilov, V.S., Ponomarev, I.: Zh. Eksp. Teor. Fiz.73, 721 (1977)

    Google Scholar 

  13. Zawadzki, W.: Adv. Phys.23, 435 (1974)

    Google Scholar 

  14. Tsidilkovski, I.M.: Band structure of semiconductors. Oxford: Pergamon Press 1982

    Google Scholar 

  15. Butikov, E.I., Kondrat'ev, A.S., Kuchma, A.E.: Sov. Phys. Solid State13, 2594 (1972)

    Google Scholar 

  16. Chemla, D.S., Kupeck, P.J., Robertson, D.S., Smith, R.C.: Opt. Commun.3, 29 (1971)

    Google Scholar 

  17. Shay, J.L., Beckman, K.J., Buechler, E., Wernick, J.H.: Appl. Phys. Lett.23, 226 (1973)

    Google Scholar 

  18. Shay, J.L., Rowe, J.W.: Phys. Rev.83, 451 (1971)

    Google Scholar 

  19. Hopfield, J.J.: J. Phys. Chem. Solids15, 97 (1960)

    Google Scholar 

  20. Kildal, H.: Phys. Rev.10B, 5082 (1974)

    Google Scholar 

  21. Shay, J.L., Wernick, J.W.: Ternary chalcopyrite semiconductors: growth, electronic properties and applications. London: Pergamon Press 1975

    Google Scholar 

  22. Ghatak, K.P., Mondal, M.: Z. Phys. B — Condensed Matter64, 223 (1986)

    Google Scholar 

  23. Zawadzki, W., Lax, M.: Phys. Rev. Lett.16, 1001 (1966)

    Google Scholar 

  24. Vil'kotskii, V.A., Domanevskii, D.S., Kakanokov, R.D., Krasovskii, V.V.: Sov. Phys. Semicond.13, 553 (1979)

    Google Scholar 

  25. Nag, B.R.: Theory of electron transport in compound semiconductors. In: Springer Series in Solid State Science, Vol. 11. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  26. Blakemore, J.S.: Semiconductor statistics. London: Pergamon Press 1962

    Google Scholar 

  27. Ponomarev, A.I., Potapov, G.A., Kharus, G.I., Tsidilkovskii, I.M.: Sov. Phys. Semicond.13, 502 (1979)

    Google Scholar 

  28. Ivic, I.A.: The Reimann zeta-function. New York: Wiley 1985

    Google Scholar 

  29. Radautsan, S.I., Arushanov, E.A., Nateprov, A.N., Chuiko, G.P.: Cadmium arsenide and ternary chalcopyrites. Moscow: Kishinev 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghatak, K.P., Mondal, M. Theoretical study of the effective electron mass in ternary chalcopyrite semiconductors in the presence of crossed electric and magnetic fields. Z. Physik B - Condensed Matter 69, 471–479 (1988). https://doi.org/10.1007/BF01312508

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312508

Keywords

Navigation