Skip to main content
Log in

Mechanism of internal oxidation of Sb and in in silver

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A new two step oxidation model is proposed that describes the mechanism of internal oxidation of the non-noble impurities antimony and indium in silver. We have found that internal oxidation at 550 K leads to the formation of isolated SbO2 or InO2 molecules, respectively. The commonly used model of Wagner treats the oxidation as a one step process, which means that in the case of antimony and indium two oxygen atoms must be trapped effectively in one step. Assuming a trapping radius of one lattice constant this model predicts an oxidation front that is much steeper than observed experimentally. The two step oxidation model assumes that first one oxygen atom is trapped at the non-oxidized impurity to form a relatively unstable complex. If within the lifetime of this complex a second oxygen atom is trapped, a stable and completely oxidized complex is formed in the silver matrix. The two step oxidation model predicts the shape of the oxidation front during internal oxidation at 550 K of antimony or indium in silver single crystals correctly, when a dissociation energy of 0.60(5) eV for the unstable complex is taken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wagner C.: Z. Elektrochem.63, 772 (1959)

    Google Scholar 

  2. Huffman, G.P., Podgurski, H.H.: Acta metall.21, 449 (1973)

    Google Scholar 

  3. Sánchez, F.H., Mercader, R.C., Pasquevich, A.F., Biblioni, A.G., López-García, A.: Hyp. Int.20, 295 (1984)

    Google Scholar 

  4. Pasquevich, A.F., Biblioni, A.G., Massolo, C.P., Sáchez, F.H., López-García, A. Phys. Lett.82A, 34 (1981)

    Google Scholar 

  5. Wodniecki, P., Wodniecka, B.: Hyperf. Interact.12, 95 (1982)

    Google Scholar 

  6. Desmoni, J., Bibiloni A.G., Mendoza-Zélis, L., Pasquevich, A.F., Sánchez, F.H., López-García, A. Phys. Rev. B28, 5739 (1983)

    Google Scholar 

  7. Schröder, H., Bolse, W., Uhrmacher, M., Wodniecki, P., Lieb, K.P.: Z. Phys. B-Condensed Matter65, 193 (1986)

    Google Scholar 

  8. Niesen, L.: Hyperf. Interact.35, 587 (1987)

    Google Scholar 

  9. Segeth, W., Boerma, D.O., Niesen, L., Smulders, P.J.M.: (to be published)

  10. Rapp, R.A.: Corrosion21, 382 (1965)

    Google Scholar 

  11. Wallwork, G.R.: Rep. Prog. Phys.39, 401 (1967)

    Google Scholar 

  12. Meijering, J.L., Druyvesteyn, M.J.: Philips Res. Rep.2, 81 and 260 (1947)

    Google Scholar 

  13. Eichenauer, W., Müller, G.: Z. Metallkd.53, 321 and correction on 700 (1962)

    Google Scholar 

  14. Ziegler, J.F.: Handbook of stopping cross-sections for energetic ions in all materials. New York: Pergamon Press 1980

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segeth, W., Boerma, D.O., Niesen, L. et al. Mechanism of internal oxidation of Sb and in in silver. Z. Physik B - Condensed Matter 73, 43–48 (1988). https://doi.org/10.1007/BF01312153

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01312153

Keywords

Navigation