Archives of Virology

, Volume 93, Issue 3–4, pp 213–222 | Cite as

AEV-transformed erythroleukemia cell induced differentiation: Expression of specific cell membrane antigenic molecules

  • I. Raynaud
  • J. M. Biquard
  • P. Chambard
  • B. Fasciotto
  • J. Samarut
  • J. P. Blanchet
  • V. Krsmanovic
Original Papers


A simultaneous decay of the expression of Im 140 kDa, Im 150 kDa and Im 160 kDa high MW membrane antigens, concomitant with the cell proliferation arrest, was observed during erythropoietin induced differentiation ofts 34 AEV-transformed erythroid cells cultivated at the restrictive temperature. Expression of embryo-immature antigens was maintained during induced differentiation of erythroleukemia cells, but their MW shifted from 50 to 48 kDa, which corresponds to the MW of embryo-immature antigens detected on normal erythroid cells. In the absence of erythropoietin at the restrictive temperature, conditions under which thets 34 AEV-transformed erythroid cells fail to differentiate and maintain their capacity to proliferate, the expression of high MW antigens as well as the expression of embryoimmature antigens remained unaffected. Therefore, it is shown that the expression of specific membrane antigens is modulated under conditions rendering the erythroleukemia cell differentiation process possible.


Cell Proliferation Infectious Disease Cell Differentiation Erythropoietin Differentiation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson SM, Haywood WS, Neel BG, Hanafusa H (1980) Avian erythroblastosis virus produces two RNAs. J Virol 36: 676–683Google Scholar
  2. 2.
    Beug H, Doederlein G, Freudenstein C, Graf T (1982) Erythroblast cell lines transformed by a temperature-sensitive mutant of avian erythroblastosis virus: a models system to study erythroid differentiationin vitro. J Cell Physiol [Suppl] 1: 195–207Google Scholar
  3. 3.
    Beug H, Hayman MJ (1984) Temperature sensitive mutants of avian erythroblastosis virus: surface expression of the erbB product correlates with transformation. Cell 36: 963–972Google Scholar
  4. 4.
    Beug H, Palmieri S, Freudenstein C, Zentgraf H, Graf T (1982) Hormone dependent terminal differentiationin vitro of chicken erythroleukemia cells transformed byts mutants of avian erythroblastosis virus. Cell 28: 907–919Google Scholar
  5. 5.
    Blanchet JP (1976) The chick erythrocyte membrane antigens: characterization and variation during embryonic and post-embryonic development. Dev Biol 48: 411–420Google Scholar
  6. 6.
    Blanchet JP (1976) Developmental changes of chick erythrocyte membrane antigens. Study by immunofluorescence. Exp Cell Res 102: 1–8Google Scholar
  7. 7.
    Brugge JS, Erikson RL (1977) Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269: 346–348Google Scholar
  8. 8.
    Cleveland DW, Fisher SG, Kirschner NW, Laemmli U (1977) Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis of gel electrophoresis. J Biol Chem 252: 1102–1106Google Scholar
  9. 9.
    Das M, Miyakawa T, Fox CF, Pruss RM, Aharonov A, Herschman HR (1977) Specific radiolabeling of a cell surface receptor for epidermal growth factor. Proc Natl Acad Sci USA 74: 2790–2794Google Scholar
  10. 10.
    Dietert RR, Lewin HA, Kass LB (1981) Identification of a galactose-like component of chicken onco-developmental antigen. J Hered 72: 257–260Google Scholar
  11. 11.
    Downward J, Yarden Y, Mayes E, Scrace G, Totty N, Stockwell P, Ullrich P, Schlessinger J, Waterfield MD (1984) Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequences. Nature 307: 521–527Google Scholar
  12. 12.
    Frykberg L, Palmieri S, Beug H, Graf T, Hayman MJ, Vennström B (1983) Transforming capacities of avian erythroblastosis virus mutants detected in the erbA or erbB oncogenes. Cell 32: 227–238Google Scholar
  13. 13.
    Gazzolo L, Samarut J, Bouabdelli M, Blanchet JP (1981) Early precursors in the erythroid lineage are the specific target cells of avian erythroblastosis virus. Cell 22: 683–691Google Scholar
  14. 14.
    Glenn K, Bowen-Pope DF, Ross R (1982) Platelet-derived growth factor. II. Identification of a platelet-derived growth factor receptor by affinity labeling. J Biol Chem 257: 5172–5176Google Scholar
  15. 15.
    Graf T (1973) Two types of target cells for transformation with avian myelocytomatosis virus. Virology 54: 398–413Google Scholar
  16. 16.
    Graf T, Ade N, Beug H (1978) Temperature sensitive mutant of differentiation as mechanism of leukaemogenesis. Nature 275: 496–501Google Scholar
  17. 17.
    Graf T, Beug H (1978) Avian leukemia viruses interaction with their target cellsin vivo. Biochim Biophys Acta 516: 269–299Google Scholar
  18. 18.
    Graf T, Royer-Pokora B, Schubert GE, Beug H (1976) Evidence for the multiple oncogenic potential of cloned leukemia virus:in vitro andin vivo studies with avian erythroblastosis virus. Virology 71: 423–433Google Scholar
  19. 19.
    Heldin CH, Westermark B (1984) Growth factors: mechanism of action and relation to oncogenes. Cell 37: 9–20Google Scholar
  20. 20.
    Kawasaki T, Ashwell G (1976) Carbohydrate structure of glycopeptides isolated from an hepatic membrane-binding protein specific for asialoglycoproteins. J Biol Chem 251: 5292–5299Google Scholar
  21. 21.
    Kessler SW (1975) Rapid isolation of antigens from cells with a staphylococcal protein A-antibody absorbant. Parameters of the interaction of antibody-antigen complexes with protein A. J Immunol 115: 1617–1624Google Scholar
  22. 22.
    Krsmanovic V, Blanchet JP, Greenland TB, Aupoix M (1979) Immunochemical properties of embryonic and adult specific antigens of chicken erythrocytes. Exp Cell Res 120: 409–412Google Scholar
  23. 23.
    Krsmanovic V, Blanchet JP, Park I, Raynaud I (1983) Expression of differentiation and age-related antigens on chicken erythroleukemia cells transformed by avian erythroblastosis virus (AEV). Exp Cell Res 147: 351–358Google Scholar
  24. 24.
    Krsmanovic V, Perisic O, Blanchet JP, Lee SY, Greenland TB (1982) Identification of two types of immature antigenic molecules on chicken red cells. Exp Cell Res 140: 434–440Google Scholar
  25. 25.
    Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T 4. Nature 227: 680–685Google Scholar
  26. 26.
    Lai MMC, Neil JC, Vogt PK (1980) Cell-free translation of avian erythroblastosis virus RNA yields two specific and distinct proteins with molecular weights of 75,000 and 40,000. Virology 100: 475–483Google Scholar
  27. 27.
    Miller MM, Goto R, Clark SD (1982) Structural characterization of developmentally expressed antigenic markers on chicken erythrocytes using monoclonal antibodies. Dev Biol 94: 400–414Google Scholar
  28. 28.
    Morrison M (1974) The determination of the exposed proteins on membranes by the use of lactoperoxidase. Meth Enzymol 32: 103–109Google Scholar
  29. 29.
    Pawson T, Martin GS (1980) Cell-free translation of avian erythroblastosis virus RNA. J Virol 34: 280–284Google Scholar
  30. 30.
    Samarut J, Blanchet JP, Nigon V (1979) Antigenic characterization of chick erythrocytes and erythropoietic precursors: identification of several populations during embryogenesis. Dev Biol 72: 156–166Google Scholar
  31. 31.
    Samarut J, Bouabdelli M (1980)In vitro development of CFU-E and BFU-E in cultures of embryonic and post-embryonic chicken hematopoietic cells. J Cell Physiol 105: 553–563Google Scholar
  32. 32.
    Samarut J, Gazzolo L (1982) Target cells infected by avian erythroblastosis virus differentiate and become transformed. Cell 28: 921–929Google Scholar
  33. 33.
    Sanders BG, Dietert RR, Kline K, Dietert H (1981) Chicken fetal antigen: example of an antigenically complex oncodevelopmental membrane glycoprotein. Oncodev Biol Med 2: 63–67Google Scholar
  34. 34.
    Saule S, Roussel M, Lagrou C, Stehelin D (1981) Characterization of the oncogene (erb) of avian erythroblastosis virus and its cellular progenitor. J Virol 38: 409–414Google Scholar
  35. 35.
    Sheiness D, Vennström B, Bishop JM (1981) Virus specific RNAs in cells infected by avian myelocytomatosis virus and avian erythroblastosis virus. Cell 23: 291–300Google Scholar
  36. 36.
    Therwath A, Scherrer K (1978) Post-transcriptional suppression of globin gene expression in cells transformed by avian erythroblastosis virus. Proc Natl Acad Sci USA 75: 3776–3780Google Scholar
  37. 37.
    Ushiro H, Cohen S (1980) Identification of phosphotyrosine as a product of epidermal growth factor-activated protein kinase in A-431 cell membranes. J Biol Chem 255: 8363–8365Google Scholar
  38. 38.
    Yamamoto T, Hihara T, Nishida T, Kawai S, Toyoshima K (1983) A new erythroblastosis virus, AEV-H, carries erbB gene responsible for the induction of both erythroblastosis and sarcomas. Cell 34: 225–234Google Scholar
  39. 39.
    Yoshida M, Toyoshima K (1980)In vitro translation of avian erythroblastosis virus RNA: identification of two major polypeptides. Virology 100: 484–488Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • I. Raynaud
    • 1
  • J. M. Biquard
    • 2
  • P. Chambard
    • 1
  • B. Fasciotto
    • 1
  • J. Samarut
    • 3
  • J. P. Blanchet
    • 3
  • V. Krsmanovic
    • 1
  1. 1.Unité de Virologie INSERM U 51LyonFrance
  2. 2.Institut du RadiumOrsayFrance
  3. 3.Département de Biologie Générale et AppliquéeUniversité Claude BernardVilleurbanneFrance

Personalised recommendations