Skip to main content
Log in

Comparative studies ontat mutants of three primate lentiviruses

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

A frame-shifttat gene mutant of human immunodeficiency virus type 1 (HIV-1), which showed no detectable trans-activation potential, was constructed in vitro. Upon transfection, this clone directed the synthesis of virus mRNAs,gag proteins and virion-associated reverse transcriptase (RT) at a low level as was observed with thetat mutants of HIV-2 and simian immunodeficiency virus isolated from African green monkey (SIVAGM). Using these mutant viruses, trans-activation efficiency of viral gene expression bytat was compared among HIV-1, HIV-2, and SIVAGM. SIVAGM seemed to be less dependent ontat for RT production than HIV-1 and HIV-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59: 284–291

    Google Scholar 

  2. Arya SK, Beaver B, Jagodzinski L, Ensoli B, Kanki PJ, Albert J, Fenyo EM, Biberfeld G, Zagury JF, Laure F, Essex M, Norrby E, Wong-Staal F, Gallo RC (1987) New human and simian HIV-related retroviruses possess functional transactivator (tat) gene. Nature 328: 548–550

    Google Scholar 

  3. Arya SK, Guo C, Josephs SF, Wong-Staal F (1985)Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229: 69–73

    Google Scholar 

  4. Chakrabarti L, Guyader M, Alizon M, Daniel MD, Desrosiers RC, Tiollais P, Sonigo P (1987) Sequence of simian immunodeficiency virus from macaque and its relationship to other human and simian retroviruses. Nature 328: 543–547

    Google Scholar 

  5. Dayton AI, Sodoroski JG, Rosen CA, Goh WC, Haseltine WA (1986) Thetrans-activator gene of the human T-lymphotropic virus type III is required for replication. Cell 44: 941–947

    Google Scholar 

  6. Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyers G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F (1986) Thetrans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–370

    Google Scholar 

  7. Folks T, Benn S, Rabson A, Theodore T, Hoggan MD, Martin M, Lightfoote M, Sell K (1985) Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immune deficiency syndrome (AIDS)-associated retrovirus. Proc Natl Acad Sci USA 82: 4539–4543

    Google Scholar 

  8. Frankel AD, Bredt DS, Pabo CO (1988) Tat protein from human immunodeficiency virus forms a metal-linked dimer. Science 240: 70–73

    Google Scholar 

  9. Fukasawa M, Miura T, Hasegawa A, Morikawa S, Tsujimoto H, Miki K, Kitamura T, Hayami M (1988) Sequence of simian immunodeficiency virus from African green monkey, a new member of the HIV/SIV group. Nature 333: 457–461

    Google Scholar 

  10. Garcia JA, Harrich D, Pearson L, Mitsuyasu R, Gaynor RB (1988) Functional domains required fortat-induced transcriptional activation of the HIV-1 long terminal repeat. EMBO J 7: 3143–3147

    Google Scholar 

  11. Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2: 1044–1051

    Google Scholar 

  12. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52: 456–467

    Google Scholar 

  13. Green M, Loewenstein PM (1988) Autonomous functional domains of chemically synthesized human immunodeficiency virus tattrans-activator protein. Cell 55: 1179–1188

    Google Scholar 

  14. Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669

    Google Scholar 

  15. Hasegawa A, Tsujimoto H, Maki N, Ishikawa K, Miura T, Fukasawa M, Miki K, Hayami M (1989) Genomic divergence of HIV-2 from Ghana. AIDS Res Hum Retroviruses 5: 593–604

    Google Scholar 

  16. Hirsch VM, Olmsted RA, Murphey-Corb M, Purcell RH, Johnson PR (1989) An African primate lentivirus (SIVSM) closely related to HIV-2. Nature 339: 389–391

    Google Scholar 

  17. Kikukawa R, Koyanagi Y, Harada S, Kobayashi N, Hatanaka M, Yamamoto N (1986) Different susceptibility to the acquired immunodeficiency syndrome retrovirus in cloned cells of human leukemic T cell line MOLT-4. J Virol 57: 1159–1162

    Google Scholar 

  18. Muesing MA, Smith DH, Cabradilla CD, Benton CV, Laskey LA, Capon DJ (1985) Nucleic acid structure and expression of the human AIDS/lymphoadenopathy retrovirus. Nature 313: 450–458

    Google Scholar 

  19. Peterlin BM, Luciw PA, Barr PJ, Walker MD (1986) Elevated levels of mRNA can account for the trans-activation of human immunodeficiency virus. Proc Natl Acad Sci USA 83: 9734–9738

    Google Scholar 

  20. Rabson AB, Daugherty DF, Venkatesan S, Boulukos KB, Benn SL, Folks T, Feorino P, Martin MA (1985) Transcription of novel open reading frames of AIDS retrovirus during infection of lymphocytes. Science 229: 1388–1390

    Google Scholar 

  21. Ratner L, Haseltine W, Patarca R, Livak KJ, Starcich B, Josephs SF, Doran ER, Rafalski JA, Whitehorn EA, Baumeister K, Ivanoff L, Petteway Jr SR, Pearson ML, Lautenberger JA, Papas TS, Ghrayeb J, Chang NT, Gallo RC, Wong-Staal F (1985) Complete nucleotide sequence of the AIDS virus. HTLV-III. Nature 313: 277–284

    Google Scholar 

  22. Rosen CA, Sodroski JG, Goh WC, Dayton AI, Lippke J, Haseltine WA (1986) Post transcriptional regulation accounts for thetrans-activation of the human T-lymphotropic virus type III. Nature 319: 555–559

    Google Scholar 

  23. Rosen CA, Sodroski JG, Haseltine WA (1985) The location ofcis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41: 813–823

    Google Scholar 

  24. Sadaie MR, Rappaport J, Benter T, Josephs SF, Willis R, Wong-Staal F (1988) Missense mutations in an infectious human immunodeficiency viral genome: functional mapping oftat and identification of therev splice acceptor. Proc Natl Acad Sci USA 85: 9224–9228

    Google Scholar 

  25. Sanchez-Pescador R, Power MD, Barr PJ, Steimer KS, Stempien MM, Prown-Shimer SL, Ge WW, Renard A, Randolph A, Levy JA, Dina D, Luciw PA (1985) Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227: 484–492

    Google Scholar 

  26. Shibata R, Miura T, Hayami M, Sakai H, Ogawa K, Kiyomasu T, Ishimoto A, Adachi A (1990) Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency virus isolated from African green monkey. J Virol 64: 307–312

    Google Scholar 

  27. Shibata R, Miura T, Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIVAGM. J Virol 64: 742–747

    Google Scholar 

  28. Sodoroski J, Patarca R, Rosen C, Wong-Staal F, Haseltine W (1985) Location of thetrans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229: 74–77

    Google Scholar 

  29. Sodoroski J, Rosen C, Wong-Staal F, Salahuddinuan SZ, Popovic M, Arya S, Gallo RC, Haseltine W (1985)Trans-acting transcriptional regulation of human T-cell leukemia virus type III long terminal repeat. Science 227: 171–173

    Google Scholar 

  30. Tsujimoto H, Hasegawa A, Maki N, Fukasawa M, Miura T, Speidel S, Cooper RW, Moriyama EN, Gojobori T, Hayami M (1989) Sequence of a novel simian immunodeficiency virus from a wild-caught African mandrill. Nature 341: 539–541

    Google Scholar 

  31. Viglianti GA, Mullins JI (1988) Functional comparison of transactivation by simian immunodeficiency virus from Rhesus Macaques and human immunodeficiency virus type 1. J Virol 62: 4523–4532

    Google Scholar 

  32. Wain-Hobson S, Sonigo P, Danos O, Cole S, Alizon M (1985) Nucleotide sequence of the AIDS virus, LAV. Cell 40: 9–17

    Google Scholar 

  33. Wigler M, Pellicer A, Silverstein S, Axel R, Urlaub G, Chasin L (1979) DNA-mediated transfer of the adenine phosphoribosyl-transferase locus into mammalian cells. Proc Natl Acad Sci USA 76: 1373–1376

    Google Scholar 

  34. Willey RL, Smith DH, Lasky LA, Theodore TS, Earl PL, Moss B, Capon DJ, Martin MA (1988) In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol 62: 139–147

    Google Scholar 

  35. Wright CM, Felber BK, Paskalis HK, Pavlakis GN (1986) Expression and characterization of thetat-activator of HTLV-III/LAV virus. Science 234: 988–992

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shibata, R., Sakai, H., Ogawa, K. et al. Comparative studies ontat mutants of three primate lentiviruses. Archives of Virology 114, 243–250 (1990). https://doi.org/10.1007/BF01310753

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01310753

Keywords

Navigation