Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Archives of Virology
  3. Article
Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses
Download PDF
Download PDF
  • Brief Report
  • Published: September 1994

Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses

  • X. Zhang1,
  • W. Herbst2,
  • K. G. Kousoulas1 &
  • …
  • J. Storz1 

Archives of Virology volume 134, pages 421–426 (1994)Cite this article

  • 379 Accesses

  • 20 Citations

  • Metrics details

Summary

The nucleotide sequence of the S gene of the bovine respiratory coronavirus (BRCV) strain G95, which was isolated from nasal swabs of a calf suffering from respiratory disorders, was determined and compared with the S gene of the enteropathogenic bovine coronavirus (BECV) strain LY138. Sequence analysis revealed 98.7% nucleotide and 98.3% deduced amino acid identities between the S genes of BRCV-G95 and BECV-LY138 without any deletions or insertions. Nucleotide substitutions were distributed randomly throughout the gene. Five monoclonal antibodies specific for the S protein distinguished BRCV-G95 from BECV-L9, but failed to differentiate it from BECV-LY138 in Western blots under denatured and native conditions. BRCV-G95 induced cytopathic changes in cell cultures that were similar to BECV-LY138 but different from BECV-L9. These results suggest that strain BRCV-G95 is more closely related to the virulent strain BECV-LY138 than to the avirulent, cell culture-adapted strain BECV-L9.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Cavanagh D, Brian DA, Enjuanes L, Holmes KV, Lai MM, Laude H, Siddell SG, Spaan W, Taguchi F, Talbot PJ (1990) Recommendations of the Corona-virus Study Group for the nomenclature of the structural proteins, mRNAs, and genes of coronaviruses, Virology 176: 306–307

    Google Scholar 

  2. Cox E, Pensaert MB, Callebaut P, van Deun DK (1990) Intestinal replication of a porcine respiratory coronavirus closely related antigenically to the enteric transmissible gastroenteritis virus. Vet Microbiol 23: 237–243

    Google Scholar 

  3. Doughri AM, Storz J (1977) Light and ultrastructural pathologic changes in intestinal coronavirus infection of newborn calves. Zentralbl Vet Med 24: 367–385

    Google Scholar 

  4. Gallagher TM, Parker SE, Buchmeier MJ (1990) Neutralization-resistant variants of a neurotropic coronavirus are generated by deletions within the amino-terminal half of the spike glycoprotein. J Virol 64: 731–741

    Google Scholar 

  5. Heckert RA, Saif LJ, Hoblet KH, Agnes AG (1990) A longitudinal study of bovine coronavirus enteric and respiratory infections in dairy calves in two herds in Ohio. Vet Microbiol 22: 187–201

    Google Scholar 

  6. Herbst W, Klatt E, Schliesser T (1989) Serologisch-diagnostische Untersuchungen zum Vorkommen von Coronavirusinfektionen bei Atemwegserkrankungen des Rindes. Berl Münch Tierärztl Wochenscht 102: 129–131

    Google Scholar 

  7. Herrler G, Rott R, Klenk HD (1985) Neuraminic acid is involved in the binding of influenza C virus to erythrocytes. Virology 141: 144–147

    Google Scholar 

  8. Hussain K, Storz J, Kousoulas KG (1991) Comparison of bovine coronavirus (BCV) antigens: Monoclonal antibodies to glycoprotein gp 100 distinguish between vaccine and wild-type strains. Virology 183: 442–445

    Google Scholar 

  9. Jimenez C, Herbst W, Biermann U, Müller JM, Schliesser T (1989) Isolierung von Coronaviren in der Zellkultur aus Nasentupferproben atemwegskranker Kälber in der Bundesrepublik Deutschland. J Vet Med B 36: 635–638

    Google Scholar 

  10. Kingston, RE (1989) Guanidinium method for total RNA preparation. In: Ausubel FM (ed) Current protocols in molecular biology. Greene Wiley-Interscience, New York, pp 421–425

    Google Scholar 

  11. Mebus CA, Stair EL, Rhodes MB, Twiehaus MJ (1973) Pathology of neonatal calf diarrhea induced by a coronavirus-like agent. Vet Pathol 10: 45–64

    Google Scholar 

  12. Mebus CA, Stair EL, Rhodes MB, Twiehaus MJ (1973) Neonatal calf diarrhea: propagation, attenuation and characteristics of coronavirus-like agents. Am J Vet Res 34: 145–150

    Google Scholar 

  13. Möstl K, Bürki F (1988) Ursächliche Beteiligung boviner Coronaviren an respiratorischen Krankheitsausbrüchen bei Kälbern und pathogenetisch-immunologische Überlegungen hierzu. Dtsch Tierärztl Wochenschr 95: 19–22

    Google Scholar 

  14. Pensaert M, Callebaut P, Vergote J (1986) Isolation of a porcine respiratory, non-enteric coronavirus related to transmissible gastroenteritis. Vet Q 8: 257–261

    Google Scholar 

  15. Rai RB, Singh NP (1983) Isolation of coronavirus from neonatal calves with pneumoenteritis in India. Vet Rec 113: 47–48

    Google Scholar 

  16. Rasschaert D, Duarte M, Laude H (1990) Porcine respiratory coronavirus differs from transmissible gastroenteritis virus by a few genomic deletions. J Gen Virol 71: 2599–2607

    Google Scholar 

  17. Reynolds DJ, Debney TG, Hall GA, Thomas LH (1985) Studies on the relationship between coronaviruses from the intestinal and respiratory tracts of calves. Arch Virol 85:71–83

    Google Scholar 

  18. Saif LJ, Redman DR, Moorhead PD, Theil KW (1986) Experimentally induced coronavirus infections in calves: viral replication in the respiratory and intestinal tracts. Am J Vet Res 47: 1426–1432

    Google Scholar 

  19. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 5463–5467

    Google Scholar 

  20. Schultze B, Wahn K, Klenk HD, Herrler G (1991) Isolated HE-protein from hemagglutinating encephalomyelitis virus and bovine coronavirus has receptor-destroying and receptor-binding activity. Virology 180: 221–228

    Google Scholar 

  21. Schultze B, Gross HJ, Brossmer R, Herrler G (1991) The S protein of bovine coronavirus is a hemagglutinin recognizing 9-0- acetylated sialic acid as a receptor determinant. J Virol 65: 6232–6237

    Google Scholar 

  22. Spaan W, Cavanagh D, Horzinek MC (1988) Coronaviruses: structure and genome expression. J Gen Virol 69: 2939–2952

    Google Scholar 

  23. St Cyr-Coats K, Storz J (1988) Bovine coronavirus induced cytopathic expression and plaque formation: host cell and virus strain determine trypsin dependence. J Vet Med B 35: 48–56

    Google Scholar 

  24. Sturman LS, Ricard CS, Holmes KV (1985) Proteolytic cleavage of the E2 glycoprotein of murine coronavirus: activation of cell-fusing activity of virions by trypsin and separation of two different 90K cleavage fragments. J Virol 56: 904–911

    Google Scholar 

  25. Tompkins WAF, Watrach AM, Schmale JD, Schultz RM, Harris JA (1974) Cultural and antigenic properties of newly established cell strains derived from adenocarcinomas of the human colon and rectum. J Natl Cancer Inst 52: 904–911

    Google Scholar 

  26. Zhang XM, Kousoulas KG, Storz J (1991) Comparison of the nucleotide and deduced amino acid sequences of the S genes specified by virulent and avirulent strains of bovine coronaviruses. Virology 183: 397–404

    Google Scholar 

  27. Zhang XM, Kousoulas KG, Storz J (1991) The hemagglutinin/esterase glycoprotein of bovine coronaviruses: sequence and functional comparisons between virulent and avirulent strains. Virology 185: 847–852

    Google Scholar 

  28. Zhang XM, Kousoulas KG, Storz J (1992) The hemagglutinin/esterase gene of human coronavirus strain OC43: phylogenetic relationships to bovine and murine coronaviruses and influenza C virus. Virology 186: 318–323

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Veterinary Microbiology and Parasitology, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA

    X. Zhang, K. G. Kousoulas & J. Storz

  2. Institut für Hygiene und Infektionskrankheiten der Tiere, Justus-Liebig Universität Giessen, Giessen, Federal Republic of Germany

    W. Herbst

Authors
  1. X. Zhang
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. W. Herbst
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. K. G. Kousoulas
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. Storz
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, X., Herbst, W., Kousoulas, K.G. et al. Comparison of the S genes and the biological properties of respiratory and enteropathogenic bovine coronaviruses. Archives of Virology 134, 421–426 (1994). https://doi.org/10.1007/BF01310579

Download citation

  • Received: 23 June 1993

  • Accepted: 07 September 1993

  • Issue Date: September 1994

  • DOI: https://doi.org/10.1007/BF01310579

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Nucleotide
  • Western Blot
  • Monoclonal Antibody
  • Infectious Disease
  • Sequence Analysis
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature