Skip to main content
Log in

The functions of oligosaccharide chains associated with influenza C viral glycoproteins

II. The role of carbohydrates in the antigenic properties of influenza C viral glycoproteins

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The antigenic properties of influenza C viral glycoprotein gp88 were compared with those of its nonglycosylated counterpart T76 synthesized in infected cells treated with tunicamycin. Radioimmunoprecipitation experiments with three different monoclonal antibodies against gp88 revealed that an antibody designated Q-5 precipitated gp88 but not T76, indicating the requirement for glycosylation for the binding of this antibody to gp88. It is unlikely, however, that the antigenic determinant recognized by Q-5 is carbohydrate moiety since the ability of the antibody to bind to gp88 varied depending on the virus strain, and trypsin-treatment of gp88 eliminated its reactivity with Q-5. Gel electrophoretic analysis under nonreducing conditions showed that T76 underwent the formation of disulfidelinked multimers in the absence of reducing agent while gp88 behaved as monomers, suggesting that glycosylation is required for gp88 molecules to attain an appropriate conformation. These observations, altogether, suggests that glycosylation is important in determining the immunological specificity of gp88 presumably by influencing the folding of this glycoprotein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Air, G. M., Compans, R. W.: Influenza B and influenza C viruses. In:Palese, P., Kingusbury, D. W. (eds.), Genetics of Influenza Viruses, 280–304. Wien-New York, Springer 1983.

    Google Scholar 

  2. Basak, S., Compans, R. W.: Studies on the role of glycosylation in the functions and antigenic properties of influenza virus glycoproteins. Virology128, 77–91 (1983).

    Google Scholar 

  3. Bonner, W. M., Laskey, R. A.: A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem.46, 83–88 (1974).

    Google Scholar 

  4. Caliguiri, L. A., Tamm, I.: The role of cytoplasmic membranes in poliovirus biosynthesis. Virology42, 100–111 (1970).

    Google Scholar 

  5. Compans, R. W., Klenk, H.-D., Caliguiri, L. A., Choppin, P. W.: Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology42, 880–889 (1970).

    Google Scholar 

  6. Gibson, R., Schlesinger, S., Kornfeld, S.: The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem.254, 3600–3607 (1979).

    Google Scholar 

  7. Gitelman, A. K., Berezin, V. A., Kharitonenkov, I. G.: The role of carbohydrate in determining the immunochemical properties of the hemagglutinin of influenza A virus. Arch. Virol.67, 253–266 (1981).

    Google Scholar 

  8. Herrler, G., Compans, R. W., Meier-Ewert, H.: A precursor glycoprotein in influenza C virus. Virology99, 49–56 (1979).

    Google Scholar 

  9. Hirst, G. K.: The relationship of the receptors of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med.91, 177–184 (1950).

    Google Scholar 

  10. Hongo, S., Sugawara, K., Homma, M., Nakamura, K.: The functions of oligo-saccharide chains associated with influenza C viral glycoproteins. I. The formation of influenza C virus particles in the absence of glycosylation. Arch. Virol.89, 171–187 (1986).

    Google Scholar 

  11. Kaluza, G., Rott, R., Schwarz, R. T.: Carbohydrate-induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity. Virology102, 286–299 (1980).

    Google Scholar 

  12. Kendal, A. P.: A comparison of “influenza C” with prototype myxoviruses: Receptor-destroying activity (Neuraminidase) and structural polypeptides. Virology65, 87–99 (1975).

    Google Scholar 

  13. Klenk, H.-D., Wollert, W., Rott, R., Scholtissek, C.: Association of influenza virus proteins with cytoplasmic fractions. Virology57, 28–41 (1974).

    Google Scholar 

  14. Köhler, G., Milstein, C.: Derivation of specific antibody-producing tissue culture and tumor lines by cell fusion. Eur. J. Immunol.6, 511–519 (1976).

    Google Scholar 

  15. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T 4. Nature (London)227, 680–685 (1970).

    Google Scholar 

  16. Nakamura, K., Compans, R. W.: Effects of glucosamine, 2-deoxyglucose, and tunicamycin on glycosylation, sulfation, and assembly of influenza viral proteins. Virology84, 303–319 (1978).

    Google Scholar 

  17. Nakamura, K., Herrler, G., Petri, T., Meier-Ewert, H., Compans, R. W.: Carbohydrate components of influenza C virions. J. Virol.29, 997–1005 (1979).

    Google Scholar 

  18. Nakamura, K., Homma, M., Compans, R. W.: Effect of tunicamycin on the replication of Sendai virus. Virology119, 474–487 (1982).

    Google Scholar 

  19. Nakamura, K., Kitame, F., Homma, M.: A comparison of proteins among various influenza B virus strains by one-dimensional peptide mapping. J. gen. Virol.56, 315–323 (1981).

    Google Scholar 

  20. Olden, K., Pratt, R. M., Yamada, K. M.: Role of carbohydrates in protein secretion and turnover: Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell13, 461–473 (1978).

    Google Scholar 

  21. Pouysséqur, J., Yamada, K. M.: Isolation and immunological characterization of a glucose-regulated fibroblast cell surface glycoprotein and its nonglycosylated precursor. Cell13, 139–150 (1978).

    Google Scholar 

  22. Schafer, W., Fischinger, P. J., Collins, J. J., Bolognesi, D. P.: Role of carbohydrate in biological functions of Friend murine leukemia virus gp 71. J. Virol.21, 35–40 (1977).

    Google Scholar 

  23. Scheid, A., Choppin, P. W.: Isolation and purification of the envelope proteins of Newcastle disease virus. J. Virol.11, 263–271 (1973).

    Google Scholar 

  24. Schwarz, R. T., Rohrschneider, J. M., Schmidt, M. F.: Suppression of glycoprotein formation of Semliki forest, influenza, and avian sarcoma virus by tunicamycin. J. Virol.19, 782–791 (1976).

    Google Scholar 

  25. Sugawara, K., Ohuchi, M., Nakamura, K., Homma, M.: Effects of various proteases on the glycoprotein composition and the infectivity of influenza C virus. Arch. Virol.68, 147–151 (1981).

    Google Scholar 

  26. Van Eldik, L. J., Paulson, J. C., Green, R. W., Smith, R. E.: The influence of carbohydrate on the antigenicity of the envelope glycoprotein of avian myeloblastosis virus and B77 avian sarcoma virus. Virology86, 193–204 (1978).

    Google Scholar 

  27. Yokota, M., Nakamura, K., Sugawara, K., Homma, M.: The synthesis of polypeptides in influenza C virus-infected cells. Virology130, 105–117 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Presented in part at the international meeting of influenza virus hemagglutinin, Miki, Japan (September 7–9, 1984).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hongo, S., Sugawara, K., Homma, M. et al. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. Archives of Virology 89, 189–201 (1986). https://doi.org/10.1007/BF01309888

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309888

Keywords

Navigation