Skip to main content
Log in

The functions of oligosaccharide chains associated with influenza C viral glycoproteins

I. The formation of influenza C virus particles in the absence of glycosylation

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The effect of a glycosylation inhibitor, tunicamycin (TM) on the replication of influenza C virus was investigated. Incorporation of [3H]-glucosamine into the gp88 glycoproteins of this virus was completely inhibited by TM at the concentrations higher than 0.25 µg/ml. Under these conditions, the synthesis of internal proteins NP and M was shown in TM-treated cells but the synthesis of gp88 was not. The disappearance of gp88 was however accompanied with the appearance of two new polypeptides with molecular weights of 80,000 (T80) and 76,000 (T76). While T80 was identified by peptide mapping as a host cell protein whose synthesis was enhanced by TM, T76 was shown to correspond to a nonglycosylated form of gp88. Pulse-chase experiments revealed that there was no significant difference in the intracellular stability of T76 and gp88. Although TM depressed the production of infectious progeny virus greater than 100-fold, only a five-fold decrease was observed in the release of noninfectious physical particles, suggesting that glycosylation is not essential for the formation of influenza C virus particles. However, the virions from TM-treated cells had a lower buoyant density in isopycnic sucrose gradients and lacked surface proteins in either glycosylated or nonglycosylated form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Air, G. M., Compans, R. W.: Influenza B and influenza C viruses. In:Palese, P., Kingsbury, D. W. (eds.), Genetics of Influenza Viruses, 280–304. Wien-New York: Springer 1983.

    Google Scholar 

  2. Basak, S., Compans, R. W.: Studies on the role of glycosylation in the functions and antigenic properties of influenza virus glycoproteins. Virology128, 77–91 (1983).

    Google Scholar 

  3. Bonner, W. M., Laskey, R. A.: A film detection method for tritium-labeled proteins and nucleic acids in polyacrylamide gels. Eur. J. Biochem.46, 83–88 (1974).

    Google Scholar 

  4. Cash, P., Hendershot, L., Bishop, D. H. L.: The effects of glycosylation inhibitors on the maturation and intracellular polypeptide synthesis induced by Snowshoe Hare bunyavirus. Virology103, 235–240 (1980).

    Google Scholar 

  5. Chatterjee, S., Bradac, J., Hunter, E.: Effect of tunycamycin on cell fusion induced by Mason-Pfizer monkey virus. J. Virol.38, 770–776 (1981).

    Google Scholar 

  6. Cleveland, D. W., Fischer, S. G., Kirscher, M. W., Laemmli, U. K.: Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J. Biol. Chem.252, 1102–1106 (1977).

    Google Scholar 

  7. Compans, R. W., Bishop, D. H. L., Meier-Ewert, H.: Structural components of influenza C virions. J. Virol.21, 658–665 (1977).

    Google Scholar 

  8. Compans, R. W., Klenk, H.-D., Caliguiri, L. A., Choppin, P. W.: Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology42, 880–889 (1970).

    Google Scholar 

  9. Diggelmann, H.: Biosynthesis of an unglycosylated envelope glycoprotein of Rous sarcoma virus in the presence of tunicamycin. J. Virol.30, 799–804 (1979).

    Google Scholar 

  10. Duksin, D., Mahoney, W. C.: Relationship of the structure and biological activity of the natural homologues of tunicamycin. J. Biol. Chem.257, 3105–3109 (1982).

    Google Scholar 

  11. Gibson, R., Leavitt, R., Kornfeld, S., Schlesinger, S.: Synthesis and infectivity of vesicular stomatitis virus containing nonglycosylated G protein. Cell13, 671–679 (1978).

    Google Scholar 

  12. Gibson, R., Schlesinger, S., Kornfeld, S.: The nonglycosylated glycoprotein of vesicular stomatitis virus is temperature-sensitive and undergoes intracellular aggregation at elevated temperatures. J. Biol. Chem.254, 3600–3607 (1979).

    Google Scholar 

  13. Herrler, G., Compans, R. W., Meier-Ewert, H.: A precursor glycoprotein in influenza C virus. Virology99, 49–56 (1979).

    Google Scholar 

  14. Herrler, G., Nagele, A., Meier-Ewert, H., Bhown, A. S., Compans, R. W.: Isolation and structural analysis of influenza C virion glycoproteins. Virology113, 439–451 (1981).

    Google Scholar 

  15. Hirst, G. K.: The relationship of the receptors of a new strain of virus to those of the mumps-NDV-influenza group. J. Exp. Med.91, 177–184 (1950).

    Google Scholar 

  16. Hongo, S., Sugawara, K., Homma, M., Nakamura, K.: The functions of oligosaccharide chains associated with influenza C viral glycoproteins. II. The role of carbohydrates in the antigenic properties of influenza C viral glycoproteins. Arch. Virol.89, 189–201 (1986).

    Google Scholar 

  17. Kendal, A. P.: A comparison of influenza C with prototype myxoviruses: Receptor-destroying activity (neuraminidase) and structural polypeptides. Virology65, 87–99 (1975).

    Google Scholar 

  18. Klenk, H.-D., Wollert, W., Rott, R., Scholtissek, C.: Association of influenza virus proteins with cytoplasmic fractions. Virology57, 28–41 (1974).

    Google Scholar 

  19. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London)227, 680–685 (1970).

    Google Scholar 

  20. Leavitt, R., Schlesinger, S., Kornfeld, S.: Tunicamycin inhibits glycosylation and multiplication of sindbis and vesicular stomatitis viruses. J. Virol.21, 375–385 (1977).

    Google Scholar 

  21. Lodish, H. F., Porter, M.: Specific incorporation of host cell surface proteins into budding vesicular stomatitis virus particles. Cell19, 161–169 (1980).

    Google Scholar 

  22. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem.193, 265–275 (1951).

    Google Scholar 

  23. Morrison, T. G., Chatis, P. A., Simpson, D.: Conformation and activity of the Newcastle disease virus HN protein in the absence of glycosylation. In:Bishop, D. H. L., Compans, R. W. (eds.). The Replication of Negative Strand Viruses, 471–477. Amsterdam: Elsevier/North-Holland 1981.

    Google Scholar 

  24. Nakamura, K., Compans, R. W.: Effects of glucosamine, 2-deoxyglucose, and tunicamycin on glycosylation, sulfation and assembly of influenza viral proteins. Virology84, 303–319 (1978).

    Google Scholar 

  25. Nakamura, K., Herrler, G., Petri, T., Meier-Ewert, H., Compans, R. W.: Carbohydrate components of influenza C virions. J. Virol.29, 997–1005 (1979).

    Google Scholar 

  26. Nakamura, K., Homma, M., Compans, R. W.: Effect of tunicamycin on the replication of Sendai virus. Virology119, 474–487 (1982).

    Google Scholar 

  27. Nakamura, K., Kitame, F., Homma, M.: A comparison of proteins among various influenza B virus strains by one-dimensional peptide mapping. J. gen. Virol.56, 315–323 (1981).

    Google Scholar 

  28. Nerome, K., Ishida, M., Nakayama, M.: Established cell line sensitive to influenza C virus. J. gen. Virol.43, 257–259 (1979).

    Google Scholar 

  29. Olden, K., Pratt, R. M., Jaworski, C., Yamada, K. M.: Evidence for role of glycoprotein carbohydrates in membrane transport: specific inhibition by tunicamycin. Proc. Natl. Acad. Sci. U.S.A.76, 791–795 (1979).

    Google Scholar 

  30. Olden, K., Pratt, R. M., Yamada, K. M.: Role of carbohydrates in protein secretion and turnover: Effects of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell13, 461–473 (1978).

    Google Scholar 

  31. Palese, P., Racaniello, V. R., Desselberger, U., Young, J., Baez, M.: Genetic structure and genetic variation of influenza C viruses. Phil. Trans. Roy. Soc. (London)288, 299–305 (1980).

    Google Scholar 

  32. Petri, T., Meier-Ewert, H., Crumpton, W. M., Dimmock, N. J.: RNAs of influenza C virus strains. Arch. Virol.61, 239–243 (1979).

    Google Scholar 

  33. Pizer, L. I., Cohen, G. H., Eisenberg, R. J.: Effect of tunicamycin on herpes simplex virus glycoproteins and infectious virus production. J. Virol.34, 142–153 (1980).

    Google Scholar 

  34. Pouyssegur, J., Shiu, P. C., Pastan, I.: Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation. Cell11, 941–947 (1977).

    Google Scholar 

  35. Rifkin, D. B., Compans, R. W.: Identification of the spike protein of Rous sarcoma virus. Virology46, 485–489 (1971).

    Google Scholar 

  36. Roth, M. G., Fitzpatrikk, J. P., Compans, R. W.: Polarity of influenza and vesicular stomatitis virus maturation in MDCK cells: Lack of a requirement for glycosylation of viral glycoproteins. Proc. Nat. Acad. Sci. U.S.A.76, 6430–6434 (1979).

    Google Scholar 

  37. Scheshberadaran, H., Norrby, E.: Three monoclonal antibodies against measles virus F protein cross-react with cellular stress protein. J. Virol.52, 995–999 (1984).

    Google Scholar 

  38. Schnitzer, T. J., Dickson, C., Weiss, R. A.: Morphological and biochemical characterization of viral particles produced by the ts 045 mutant of vesicular stomatitis virus at a restrictive temperature. J. Virol.29, 185–195 (1979).

    Google Scholar 

  39. Schwarz, R. T., Rohrschneider, J. M., Schmidt, M. F. G.: Suppression of glycoprotein formation of Semliki forest, influenza and avian sarcoma virus by tunicamycin. J. Virol.19, 782–791 (1976).

    Google Scholar 

  40. Stallcup, K. C., Fields, B. N.: The replication of measles virus in the presence of tunicamycin. Virology108, 391–404 (1981).

    Google Scholar 

  41. Stohrer, R., Hunter, E.: Inhibition of Rous sarcoma virus replication by 2-deoxyglucose and tunicamycin: identification of an unglycosylated env gene product. J. Virol.32, 412–419 (1979).

    Google Scholar 

  42. Sugawara, K., Ohuchi, M., Nakamura, K., Homma, M.: Effects of various proteases on the glycoprotein composition and the infectivity of influenza C virus. Arch. Virol.68, 147–151 (1981).

    Google Scholar 

  43. Takatsuki, A., Tamura, G.: Tunicamycin, a new antibiotic. II. Some biological properties of the antiviral activity of tunicamycin. J. Antibiot.24, 224–231 (1971).

    Google Scholar 

  44. Tkacz, J. S., Lampen, J. O.: Tunicamycin inhibition of polyisoprenyl N-acetylglucosaminyl pyrophosphate formation in calf liver microsomes. Biochem. Biophys. Res. Commun.65, 248–257 (1975).

    Google Scholar 

  45. Yokota, M., Nakamura, K., Sugawara, K., Homma, M.: The synthesis of polypeptides in influenza C virus-infected cells. Virology130, 105–117 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 7 Figures

Presented in part at the international meeting of influenza virus hemagglutinin, Miki, Japan (September 7–9, 1984).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hongo, S., Sugawara, K., Homma, M. et al. The functions of oligosaccharide chains associated with influenza C viral glycoproteins. Archives of Virology 89, 171–187 (1986). https://doi.org/10.1007/BF01309887

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309887

Keywords

Navigation