Skip to main content
Log in

Fusion of Semliki Forest virus infected aedes albopictus cells at low pH is a fusion from within

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Herein, it is shown for the first time that the mechanism of fusion followed in Aedes albopictus cells infected with Semliki Forest virus induced by low pH exposure is a “fusion from within”. Several parameters were studied disclosing that the development of the fusion capacity of the cells is directly related to the synthesis of viral specific products. These findings were further substantiated by utilizing various chemicals to inhibit viral specific events during infection, protein synthesis and maturation. Removal of exogenous virions produced at 16 hours post infection by proteinase K digestion clearly revealed that the viral proteins located at the cell surface and not the exogenous virions were responsible for the fusogenic activity. The presence of these viral proteins at the cell surface was disclosed by immunofluorescence employing anti-SFV antibodies elicited in rabbits. Additional evidence for the participation of the viral proteins at the cell surface in the fusion reaction was obtained by Bromelaine digestion which inhibited the fusion and tunicamycin treatment which only partially inhibited the fusion but revealed the inevitable presence of the E1 protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahkong, Q. F., Botham, G. M., Woodward, A. W., Lucy, J. A.: Calcium-activated thiol-proteinase activity in the fusion of rat erythrocytes induced by benzyl alcohol. Biochem. J.192, 829–836 (1980).

    Google Scholar 

  2. Boss, W. F., Morré, D. J., Mollenhauer, H. H.: Monensin-induced swelling of Golgi apparatus cisternae mediated by a proton gradient. Eur. J. Cell Biol.34, 1–8 (1984).

    Google Scholar 

  3. Bratt, M. A., Gallaher, W. R.: Preliminary analysis of the requirements for fusion from within and fusion from without by Newcastle disease virus. Proc. Natl. Acad. Sci. U.S.A.64, 536–543 (1969).

    Google Scholar 

  4. Butters, T. D., Hughes, R. C.: Isolation and characterization of mosquito cell membrane glycoproteins. Biochim. Biophys. Acta640, 655–671 (1981).

    Google Scholar 

  5. Cassell, S., Edwards, J., Brown, D. T.: Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus. J. Virol.52, 857–864 (1984).

    Google Scholar 

  6. Chamberlain, J. P.: Fluorographic detection of radioactivity in polyacrylamide gels with the water soluble fluor, sodium salicylate. Anal. Biochem.98, 132–135 (1979).

    Google Scholar 

  7. Den, H.: Effect of monensin on myoblast fusion. Biochem. Biophys. Res. Commun.126, 313–319 (1985).

    Google Scholar 

  8. Eaton, B. T., Faulkner, P.: Heterogeneity in the poly (A) content of the genome of Sindbis virus. Virology50, 865–873 (1972).

    Google Scholar 

  9. Eaton, B. T., Regnery, R. L.: Polysomal RNA in Semliki Forest virus infected Aedes albopictus cells. J. gen. Virol.29, 35–49 (1975).

    Google Scholar 

  10. Edwards, J., Brown, D. T.: Sindbis virus induced fusion of tissue cultured Aedes albopictus (mosquito) cells. Virus Res1, 705–711 (1984).

    Google Scholar 

  11. Edwards, J., Mann, E., Brown, D. T.: Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH. J. Virol.45, 1090–1097 (1983).

    Google Scholar 

  12. Gallaher, W. R., Levitan, D. B., Kirwin, K. S., Blough, H. A.: Molecular and Biological Parameters of Membrane Fusion. In:Blough, H. A., Tiffany, J. M. (eds.), Cell Membranes and Viral Envelopes. Vol. 1, 395–457. New York: Academic Press 1980.

    Google Scholar 

  13. Garoff, H., Kondor-Koch, Cl., Riedel, H.: Structure and assembly of alpha viruses. Curr. Top. Microbiol. and Immunol.99, 1–50 (1982).

    Google Scholar 

  14. Gates, D., Brown, A., Wust, C. J.: Comparison of specific and cross-reactive antigens of alpha-viruses on virions and infected cells. Infection and Immunity35, 248–255 (1982).

    Google Scholar 

  15. Gliedman, J. B., Smith, J. F., Brown, D. T.: Morphogenesis of Sindbis virus in cultured Aedes albopictus cells. J. Virol.16, 913–926 (1975).

    Google Scholar 

  16. Helenius, A., Kielian, M., Wellsteed, J., Mellman, I., Rudnick, G.: Effects of monovalent cations on Semliki Forest virus entry into BHK-21 cells. J. Biol. Chem.260, 5691–5697 (1985).

    Google Scholar 

  17. Helenius, A., Marsh, M., White, J.: Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases. J. gen. Virol.58, 47–61 (1982).

    Google Scholar 

  18. Hsieh, P., Robbins, P. W.: Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells. J. Biol. Chem.259, 2375–2382 (1984).

    Google Scholar 

  19. Hsu, M. C., Scheid, A., Choppin, P. W.: Fusion of Sendai virus with liposomes: dependence on the viral fusion protein (F) and the lipid composition of liposomes. Virology126, 361–369 (1983).

    Google Scholar 

  20. Igarashi, A.: Isolation of a Singh's Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses. J. gen. Virol.40, 531–544 (1978).

    Google Scholar 

  21. Kääriäinen, L., Hashimoto, K., Saraste, J., Virtanen, I., Penttinen, K.: Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins. J. Cell Biol.87, 783–791 (1980).

    Google Scholar 

  22. Kielian, M. C., Helenius, A.: Role of cholesterol in fusion of Semliki Forest virus with membranes. J. Virol.52, 281–283 (1984).

    Google Scholar 

  23. Klenk, H. D., Schwarz, R. T.: Viral glycoprotein metabolism as a target for antiviral substances. Antiviral Res.2, 177–190 (1982).

    Google Scholar 

  24. Koblet, H., Kempf, C., Kohler, U., Omar, A.: Conformational changes at pH 6 on the cell surface of Semliki Forest virus infected Aedes albopictus cells. Virology143, 334–336 (1985).

    Google Scholar 

  25. Koblet, H., Omar, A., Kempf, C.: Fusion of Alphavirus infected mosquito cells. In:Yunker, C. E. (ed.), Arbovirus Cultivation in Arthropod Cellsin vitro. Boca Raton, Fla.: CRC Press, in press.

  26. Kondor-Koch, C., Burke, B., Garoff, H.: Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein. J. Cell Biol.97, 644–651 (1983).

    Google Scholar 

  27. Kondor-Koch, C., Garoff, H.: Construction of a hybrid plasmid molecule containing the total coding region of Semliki Forest virus 26S mRNA. J. gen. Virol.58, 443–448 (1982).

    Google Scholar 

  28. Kondor-Koch, C., Riedel, H., Soderberg, K., Garoff, H.: Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of baby hamster kidney cells. Proc. Natl. Acad. Sci. U.S.A.79, 4525–4529 (1982).

    Google Scholar 

  29. Laemmli, U. K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London)227, 680–685 (1970).

    Google Scholar 

  30. Mann, E., Edwards, J., Brown, D. T.: Polycaryocyte formation mediated by Sindbis virus glycoproteins. J. Virol.45, 1083–1089 (1983).

    Google Scholar 

  31. Marsh, M., Helenius, A.: Adsorptive endocytosis of Semliki Forest virus. J. Mol. Biol.142, 439–454 (1980).

    Google Scholar 

  32. McMaster, G. K., Carmichael, G. G.: Analysis of single- and double-stranded nucleic acids on polyacrylamide and agarose gels by using glyoxal and acridine orange. Proc. Natl. Acad. Sci. U.S.A.74, 4835–4838 (1977).

    Google Scholar 

  33. Pressman, B. C.: Biological applications of ionophores. Ann. Rev. Biochem.45, 501–530 (1976).

    Google Scholar 

  34. Richardson, M. A., Boulton, R. W., Raghow, R. S., Dalgarno, L.: Polypeptide synthesis in alphavirus-infected Aedes albopictus cells during the establishment of persistent infection. Arch. Virol.64, 263–274 (1980).

    Google Scholar 

  35. Sarver, N., Stollar, V.: Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells. Virology80, 390–400 (1977).

    Google Scholar 

  36. Schilt, U.: Differentiation of Herpes simplex virus type 1 and type 2 by immunofluorescence: discriminative staining by labelled IgG preparations. Z. Immun-Forsch.155, 411–419 (1979).

    Google Scholar 

  37. Schwarz, R. T., Datema, R.: Inhibitors of protein glycosylation. Trends in Biochem. Sci.1980, 65–67.

  38. Simizu, B., Maeda, S.: Growth patterns of temperature-sensitive mutants of Western Equine Encephalitis virus in cultured Aedes albopictus (mosquito) cells. J. gen. Virol.56, 349–361 (1981).

    Google Scholar 

  39. Spaeth, P. J., Koblet, H.: Alphavirus Induced Syncytium Formation in Aedes albopictus Cell Cultures. In:Kurstak, E., Maramorosch, K., Duebendorfer, A. (eds.), Invertebrate Systemsin vitro, 375–388. Amsterdam: Elsevier/North-Holland Biomedical Press 1980.

    Google Scholar 

  40. Stalder, J., Reigel, F., Koblet, H.: Defective viral RNAs in Aedes albopictus C6/36 cells persistently infected with Semliki Forest virus. Virology129, 247–254 (1983).

    Google Scholar 

  41. Stollar, V.: Togaviruses in Cultured Arthropod Cells. In:Schlesinger, R. W. (ed.), The Togaviruses: Biology, Structure, Replication, 583–621. New York: Academic Press 1980.

    Google Scholar 

  42. Sweet, B. H., Unthank, H. D.: A comparative study of the viral susceptibility of monolayer and suspended mosquito cell lines. Curr. Top. Microbiol. Immunol.55, 150–154 (1971).

    Google Scholar 

  43. Thomas, P. S.: Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc. Natl. Acad. Sci. U.S.A.77, 5201–5205 (1980).

    Google Scholar 

  44. Väänänen, P., Gahmberg, C. G., Kääriäinen, L.: Fusion of Semliki Forest virus with red cell membranes. Virology110, 366–374 (1981).

    Google Scholar 

  45. Väänänen, P., Kääriäinen, L.: Fusion and haemolysis of erythrocytes caused by three togaviruses: Semliki Forest, Sindbis and Rubella. J. gen. Virol.46, 476–475 (1980).

    Google Scholar 

  46. Weintraub, H., Palter, K., van Lente, F.: Histones H2a, H2b, H3 and H4 form a tetrameric complex in solution of high salt. Cell6, 85–110 (1975).

    Google Scholar 

  47. White, J., Helenius, A.: pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc. Natl. Acad. Sci. U.S.A.77, 3273–3277 (1980).

    Google Scholar 

  48. White, J., Kartenbeck, J., Helenius, A.: Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH. J. Cell Biol.87, 264–272 (1980).

    Google Scholar 

  49. White, J., Matlin, K., Helenius, A.: Cell fusion by Semliki Forest, Influenza, and vesicular stomatitis viruses. J. Cell Biol.89, 674–679 (1981).

    Google Scholar 

  50. Wilcox, G. E., Compans, R. W.: Cell fusion induced by Nelson Bay virus. Virology123, 312–322 (1982).

    Google Scholar 

  51. Wolcott, J. A., Wust, C. J., Brown, A.: Identification of immunologically cross-reactive proteins of Sindbis virus: evidence for unique conformation of E1 glycoprotein from infected cells. J. Virol.49, 379–385 (1984).

    Google Scholar 

  52. Yunker, C. E., Cory, J.: Plaque production by Arboviruses in Singh's Aedes albopictus cells. Appl. Microbiol.29, 81–89 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 2 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omar, A., Flaviano, A., Kohler, U. et al. Fusion of Semliki Forest virus infected aedes albopictus cells at low pH is a fusion from within. Archives of Virology 89, 145–159 (1986). https://doi.org/10.1007/BF01309885

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309885

Keywords

Navigation