Skip to main content
Log in

Comparison between E1A gene from oncogenic and non-oncogenic adenoviruses in cellular transformation (Ad E1A conserved region)

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

All adenoviruses transform primary BRK cells in vitro, but only cells transformed by oncogenic adenoviruses are tumorigenic for immunocompetent animals. The transforming E1 regions of human Ad 2 and Ad 12 also differ from each other in the frequency in which they can transform BRK cells. We have investigated these properties which can be assigned to the specific domain of the E1A region. For this purpose, chimeric E1A regions between Ad 2 and Ad 12 have been constructed. The efficiency of cell transformation appeared to be determined by the encoding region. The promoter sequences were not important for an efficient cellular transformation although the E1B regioncis activated in E1A transcription in both cell transformation and transient expression. We show that sequences located in the E1B promoter were responsible for this effect. In the encoding region the CR 1 domain was essential for the cell transformation frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adami GR, Babiss LE (1990) The efficiency of adenovirus transformation of rodent cells is inversely related to the rate of viral E1A gene expression. J Virol 64: 3427–3436

    Google Scholar 

  2. Bernards R, van der Eb AJ (1984) Adenovirus: transformation and oncogenicity. Biochem Biophys Acta 783: 187–204

    Google Scholar 

  3. Berk AJ, Lee F, Harrisson T, Williams J, Sharp PA (1979) Pre-early adenovirus 5 gene product regulates synthesis of early viral messenger RNAs. Cell 17: 935–944

    Google Scholar 

  4. Boulanger PA, Blair GE (1991) Expression and interactions of human adenovirus oncoproteins. Biochem J 275: 281–299

    Google Scholar 

  5. Borrelli E, Hen R, Chambon P (1984) Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature 312: 608–612

    Google Scholar 

  6. Branton PF, Bayley ST, Graham FL (1985) Transformation by human adenoviruses. Biochem Biophys Acta 780: 67–94

    Google Scholar 

  7. Cousin C, Winter N, Gomes S, D'Halluin JC (1991) Cellular transformation by enteric adenoviruses. Virology 181: 277–287

    Google Scholar 

  8. D'Halluin JC, Leclère V (1992) The adenovirus E1A gene: immortalizing nuclear oncogene prototype. Bull Inst Pasteur 90: 45–65

    Google Scholar 

  9. Grand RJA, Byrd PJ, Graham PW, Gregory CD, Huen DS, Merrik RM, Young LS, Gallimore PH (1989) The expression of the retinoblastoma gene product Rb 1 in primary and adenovirus-transformed human cell. Oncogene 4: 1291–1298

    Google Scholar 

  10. Hearing P, Shenk T (1983) The adenovirus type 5 E1A transcriptional control region contains a duplicated enhancer element. Cell 33: 695–703

    Google Scholar 

  11. Hen R, Borrelli E, Sassone-Corsi P, Chambon P (1983) An enhancer element is located 340 base pairs upstream from the adenovirus-2 E1A capsite. Nucleic Acids Res 11: 8747–8761

    Google Scholar 

  12. Hen R, Borrelli E, Chambon P (1985) Repression of the immunoglobulin heavy chain enhancer by the adenovirus 2 E1A products. Science 230: 1391–1394

    Google Scholar 

  13. Herbst RS, Pelletier M, Boczko EM, Babiss LE (1990) The state of cellular differentiation determines the activity of the adenovirus E1A enhancer element: evidence for negative regulation of enhancer functions. J Virol 64: 161–172

    Google Scholar 

  14. Herrmann CH, Mathews MB (1989) The adenovirus E1B 19-kilodalton protein stimulates gene expression by increasing DNA levels. Mol Cell Biol 9: 5412–5423

    Google Scholar 

  15. Imperiale MJ, Feldman LT, Nevins JR (1983) Activation of gene expression by adenovirus and herpes virus regulatory genes acting intrans and by acis-acting adenovirus enhancer element. Cell 35: 127–136

    Google Scholar 

  16. Jelinek T, Graham FL (1992) Recombinant human adenoviruses containing hybrid adenovirus type 5 (Ad 5)/Ad 12 E1A genes: characterization of hybrid E1A proteins and analysis of transforming activity and host range. J Virol 66: 4117–4125

    Google Scholar 

  17. Jochemsen AG, Peltenburg LTG, te Pas MFW, de Wit CM, Bos JL, van der Eb AJ (1987) Activation of adenovirus 5-E1A transcription by region E1B in transformed primary rat cells. EMBO J 6: 3399–3405

    Google Scholar 

  18. Jones N, Shenk T (1979) An adenovirus type 5 early gene function regulates expression and other early viral genes. Proc Natl Acad Sci USA 76: 3665–3669

    Google Scholar 

  19. Jones NC, Rigby WJ, Ziff EB (1988) Transacting protein of eukaryotic transcription: lessons from studies on DNA tumor viruses. Genes Dev 2: 267–281

    Google Scholar 

  20. Kao HT, Nevins JR (1983) Transcriptional activation and subsequent control of the human heat shock gene during adenovirus infection. Mol Cell Biol 3: 2058–2065

    Google Scholar 

  21. Kimelman D, Miller JS, Porter D, Roberts BE (1985) E1A regions of the human adenoviruses and of the highly oncogenic simian andenovirus 7 are closely related. J Virol 53: 399–409

    Google Scholar 

  22. Krippl B, Ferguson B, Jones N, Rosenberg M, Westphal H (1985) Mapping of functional domains in adenovirus E1A proteins. Proc Natl Acad Sci USA 82: 7480–7484

    Google Scholar 

  23. Lamberti C, Williams J (1990) Differential requirement for adenovirus type 12 E1A gene products in oncogenic transformation. J Virol 64: 4997–5007

    Google Scholar 

  24. Leite JPG, Niel C, D'Halluin JC (1986) Expression of the chloramphenicol acetyl transferase gene in human cells under the control of early adenovirus subgroup C promoters: effect of E1A gene products from other subgroups on gene expression. Gene 41: 207–215

    Google Scholar 

  25. Leite JPG, Collard JF, D'Halluin JC (1988) The regulation of E1A: the role of both E1A mRNA products of the subgroup B adenovirus on the early promoters of the subgroup C adenoviruses. Gene 69: 111–120

    Google Scholar 

  26. Leite JPG, D'Halluin JC (1988) Differences in the organization of adenovirus E1A promoters are not important for full activity. FEBS Lett 235: 233–236

    Google Scholar 

  27. Lillie JW, Green M, Green MR (1986) An adenovirus E1A protein region required for transformation and transcriptional repression. Cell 46: 1043–1051

    Google Scholar 

  28. Lillie JW, Loewenstein PM, Green MR, Green M (1987) Functional domains of adenovirus type 5 E1A proteins. Cell 50: 1091–1100

    Google Scholar 

  29. Moran E, Zerler B, Harrison TM, Mathews MB (1986) Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol Cell Biol 6: 3470–3480

    Google Scholar 

  30. Parks CL, Banerjee S, Spector DJ (1988) Organization of the transcriptional control region of E1B gene of adenovirus type 5. J Virol 62: 54–67

    Google Scholar 

  31. Perricaudet M, Akusjarvi G, Virtanen A, Pettersson U (1979) Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature 281: 694–696

    Google Scholar 

  32. Rochette-Egly C, Fromental C, Chambon P (1990) General repression of enhanson activity by the adenovirus-2 E1A proteins. Genes Dev 4: 137–150

    Google Scholar 

  33. Schneider JF, Fisher F, Goding CR, Jones NC (1987) Mutational analysis of the adenovirus E1A gene: the role of transcriptional regulation in transformation. Embo J 6: 2053–2060

    Google Scholar 

  34. Stein RW, Ziff EB (1984) HeLa cell β-tubulin gene transcription is stimulated by adenovirus 5 in parallel with viral early genes by an E1A-dependent mechanism. Mol Cell Biol 4: 2792–2801

    Google Scholar 

  35. Stein RW, Ziff EB (1987) Repression of insulin gene expression by adenovirus type 5 E1A proteins. Mol Cell Biol 7: 1164–1170

    Google Scholar 

  36. Stillman BW (1986) Functions of the adenovirus E1B tumor antigens. Cancer Surv 5: 389–404

    Google Scholar 

  37. Su W, Jackson S, Tjian R, Echols H (1991) DNA looping between sites for transcriptional activation: self-association of bound Sp 1. Genes Dev 5: 820–826

    Google Scholar 

  38. Trentin JJ, Yabe Y, Taylor G (1962) The quest for human cancer viruses. Science 137: 835–841

    Google Scholar 

  39. van Dam H, Offringa R, Smits AMM, Bos JL, Jones NC, van der Eb AJ (1989) The repression of the growth factor-inducible gene J. E., c-myc and stromelysin by adenovirus E1A is mediated by conserved region 1. Oncogene 4: 1207–1212

    Google Scholar 

  40. van den Elsen PJ, Houweling A, van der Eb AJ (1983) Morphological transformation of human adenovirus is determined to large extend by gene products of region E1A. Virology 131: 242–246

    Google Scholar 

  41. Velcich AJ, Ziff E (1985) Adenovirus E1A proteins repress transcription from the SV 40 early promoter. Cell 40: 705–716

    Google Scholar 

  42. Velcich A, Kern FG, Basilico C, Ziff EB (1986) Adenovirus E1A proteins repress expression from polyomavirus early and late promoters. Mol Cell Biol 6: 4019–4025

    Google Scholar 

  43. Whyte P, Buchkovich JJ, Horowitz JM, Friend SH, Raybuck M, Weinberg RA, Harlow E (1988) Association between an oncogene and anti-oncogene: the adenovirus E1A protein bind to the retinoblastoma gene product. Nature 334: 124–129

    Google Scholar 

  44. Winter N, D'Halluin JC (1991) Regulation of the biosynthesis of subgroup C adenovirus protein IVa 2. J Virol 65: 5250–5259

    Google Scholar 

  45. Wu BJ, Hurst HC, Jones NC, Morimoto RI (1986) The E1A 13 S product of adenovirus 5 activates transcription of the cellular human HSP 70 gene. Mol Cell Biol 6: 2994–2999

    Google Scholar 

  46. Wu L, Rosser DSE, Schmidt MC, Berk A (1987) A TATA box implicated in E1A transcriptional activation of a simple adenovirus 2 promoter. Nature 326: 512–515

    Google Scholar 

  47. Zerler B, Roberts RJ, Mathews MB, Moran E (1987) Different functional domains of the adenovirus E1A gene involved in regulation of host cell cycle products. Mol Cell Biol 7: 821–829

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leclére, V., Huvent, I., Verwaerde, P. et al. Comparison between E1A gene from oncogenic and non-oncogenic adenoviruses in cellular transformation (Ad E1A conserved region). Archives of Virology 132, 343–357 (1993). https://doi.org/10.1007/BF01309544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309544

Keywords

Navigation