Skip to main content
Log in

Stage III-recovery of cold worked high-purity aluminium determined with a low-temperature calorimeter

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Using a low-temperature calorimeter annealing effects were investigated in high-purity aluminium of varying grades of purity (Al 99.99, Al 99.999 and Al 99.9999) which had been subjected to deformation by torsion at liquid nitrogen. For the purpose of comparison, some residual resistivity measurements were performed on deformed and quenched Al 99.999.

The calorimetric signals comprises two consecutive peaks (low-temperature peak and high-temperature peak) for each degree of deformation and purity. The low-temperature peak, with a maximum at 200 K-210 K, lies in the temperature range stage III, well-known from isochronous resistivity measurements. The effective activation energy of the annealing defects in this peak has the valueQ m=0.62 eV/atom averaged over all degrees of deformation and purity, and is thus close to the known values of the activation energy of vacancy migration. Throughout the high-temperature peak, the position of which on the temperature scale depends strongly on the degree of deformation and purity, the processes of primaty recrystallization and dislocation recovery take place in the material. The coincidence of this peak with the changes of mechanical and electrical properties are in accordance with this interpretation. Thus to the usual nomenclature for isochronous resistance measurements, one may designate this peak a “stage V” reaction peak.

In this paper the particular results of the low-temperature peak (“stage III” peak) are analysed and discussed. Then the experimental data are compared with the literature data derived from other measuring procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sassa, K., Petry, W., Vogl, G.: Philos. Mag. A48 (No. 1), 41–61 (1982)

    Google Scholar 

  2. Ceresara, S., Elkholy, H., Federighi, T.: Philos. Mag.12, 1105 (1965)

    Google Scholar 

  3. Frois, C.: Acta Metall.14, 1325 (1966)

    Google Scholar 

  4. Ceresara, S.: Philos. Mag.19, 99 (1969)

    Google Scholar 

  5. Lugscheider, W., Breitenfellner, F., Lihl, F.: Z. Metallkd.59, 22 (1968)

    Google Scholar 

  6. Hegazi, A., Kovács, I., Nagy, E.: Phys. Status Solidi33, 131 (1969)

    Google Scholar 

  7. Kozinets, V.V.: Phys. Met. Metall.53 (No. 5), 136–138 (1982)

    Google Scholar 

  8. Vostry', P., Haslar, V., Sprusil, B.: Mater. Sci. Forum15–18, 795–800 (1987)

    Google Scholar 

  9. Wollenberger, H.J.: Point defects. In: Physical metallurgy. Cahn, R.W., Haasen, P. (eds.), p. 1139. Amsterdam: Elsevier Science Publishers 1983

    Google Scholar 

  10. Hashimoto, E., Ono, K., Kino, T.: J. Phys. Soc. Jpn.42, (No. 3), 868 (1977)

    Google Scholar 

  11. Harvyama, O.: Jpn. Appl. Phys.20 (No. 9), 1641 (1981)

    Google Scholar 

  12. Nasu, S., Preston, R.S., Gonser, U.: Mater. Sci. Forum15–18, 599–604 (1987)

    Google Scholar 

  13. Müller, H.G.: Z. Phys. B—Condensed Matter47, 119–127 (1982)

    Google Scholar 

  14. Rajainmäki, H., Linderoth, S., Nieminen, R.M., Hansen, H.E.: Mater. Sci. Forum15–18, 611–616 (1987)

    Google Scholar 

  15. Kanazawa, I., Murakami, H., Doyama, M.: Mater. Sci. Forum15–18, 919–924 (1987)

    Google Scholar 

  16. Schmidt, J.: Thermochim. Acta151, 333–344 (1989)

    Google Scholar 

  17. Bueren, H.G. van: Z. Metallkd.46, 272 (1955)

    Google Scholar 

  18. Haeßner, F., Schmidt, J.: Scr. Met.22, 1917 (1988)

    Google Scholar 

  19. Siegel, R.W.: J. Nucl. Mater.69,70, 117 (1978)

    Google Scholar 

  20. Saada, G.: Acta Metall.9, 166, 965 (1961)

    Google Scholar 

  21. Beukel, A. van den: Point defects in cold worked fcc metals. In: Vacancies and interstitials in metals. Seeger, A., Schumacher, D., Schilling, W., Diehl, J. (eds.), p. 427. Amsterdam: North-Holland 1970

    Google Scholar 

  22. Balluffi, R.W.: J. Nucl. Mater.69, 70, 240 (1978)

    Google Scholar 

  23. Haeßner, F., Schönborn, K.H.: Z. Metallkd.76, 198 (1985)

    Google Scholar 

  24. Schönborn, K.H., Haeßner, F.: Thermochim. Acta86, 305–320 (1985)

    Google Scholar 

  25. Sestak', J.: Thermophysical properties of solids. Their measurements and theoretical thermal analysis. In: Comprehensive analytical chemistry. Svehla, G. (ed.), Vol. XII, Part D, p. 212ff. Amsterdam: Elsevier 1984

    Google Scholar 

  26. Christian, J.W.: The theory of transformations in metals and alloys. Part I: Equilibrium and general kinetic theory. Raynor, G.V. (ed.), p. 542ff. New York: Pergamon Press 1975

    Google Scholar 

  27. Seeger, A.: Moderne Probleme der Metallphysik. Seeger, A. (ed.) p. 245. Berlin, Heidelberg, New York: Springer 1965

    Google Scholar 

  28. Nihoul, J., Stals, L.: Phys. Status Solidi17, 295 (1966)

    Google Scholar 

  29. Streda, P.: Crystal Latt. Def.1, 229–235 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, J., Haeßner, F. Stage III-recovery of cold worked high-purity aluminium determined with a low-temperature calorimeter. Z. Physik B - Condensed Matter 81, 215–222 (1990). https://doi.org/10.1007/BF01309351

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309351

Keywords

Navigation