Skip to main content
Log in

On the hole spectral function of the Emery model

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We discuss the spectral function of a single O hole generated in a two-dimensional CuO2-lattice at half-filling. The latter constitutes the most important structural element of high-T c superconducting materials. The system is described by the so-called extended Hubbard or Emery model. Strong electronic correlations which are incorporated in the model prevent the usual evaluation of Green functions based on Wick's theorem and using diagram techniques. For that reason we apply a new cumulant approach to dynamical correlation functions introduced recently. As a result we find that the local one-O hole excitation spectrum has two structured absorption regions around the bare O energyɛ p and aroundɛ p +Δ due to charge fluctuations of Cu holes. Here Δ is the bare charge transfer gap. The width of the absorption regime aroundɛ p is of the order of several timest 2 pd /Δ, wheret pd is the hopping integral between Cu and O holes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.W.: Science235, 1196 (1987); and in: Proceedings of the International School of Physics “Enrico Fermi”, July 1987. Frontiers and borderlines in many particle physics. Amsterdam: North Holland 1989

    Google Scholar 

  2. Eder, R., Becker, K.W.: Z. Phys. B—Condensed Matter78, 219 (1990)

    Google Scholar 

  3. Kane, C.L., Lee, P.A., Read, N.: Phys. Rev. B39, 6880 (1989)

    Google Scholar 

  4. Maekawa, S., Inoue, J., Tohyama, T.: In: Strong correlation and superconductivity. Berlin, Heidelberg, New York: Springer 1989

    Google Scholar 

  5. Stephan, W., v. Sczcepanski, K., Horsch, P., Ziegler, M.: Phys. Rev. B39, 6880 (1989)

    Google Scholar 

  6. Trugman, S.A.: Phys. Rev. B37, 1597 (1988)

    Google Scholar 

  7. Becker, K.W., Brenig, W.: Z. Phys. B—Condensed Matter79, 195 (1990)

    Google Scholar 

  8. v. Sczepanski, K., Horsch, P., Stephan, W., Ziegler, M.: Phys. Rev. B41, 2017 (1990)

    Google Scholar 

  9. Dagotto, E., Joynt, R., Moreo, A., Bacci, S., Gagliano, E.: Phys. Rev. B41 2585 (1990)

    Google Scholar 

  10. Emery, V.J.: Phys. Rev. Lett58, 2794 (1987)

    Google Scholar 

  11. Nücker, N., Fink, J., Fuggle, J.C., Durham, P.J., Temmerman, W.M.: Phys. Rev. B37, 5158 (1988)

    Google Scholar 

  12. Singh, R.R.P., Fleury, P.A., Lyons, K.B., Sulewski, P.E.: Phys. Rev. Lett.62, 2736 (1989)

    Google Scholar 

  13. Hybertsen, M.S., Schlüter, M., Christensen, N.E.: Phys. Rev. B39, 9028 (1989); Stechel, E.B., Jennison, D.R.: Phys. Rev. B40, 6919 (1989)

    Google Scholar 

  14. Becker, K.W., Fulde, P.: Z. Phys. B—Condensed Matter72, 423 (1988)

    Google Scholar 

  15. Shirane, G., Endoh, Y., Birgeneau, R.J., Kastner, M.A., Hidaka, Y., Oda, M., Suzuki, M., Murakami T.: Phys. Rev. Lett.59, 1613 (1987)

    Google Scholar 

  16. Kubo, R.: J. Phys. Soc. Jpn.17, 1100 (1962)

    Google Scholar 

  17. Mori, H.: Progr. Theor. Phys.34, 423 (1965)

    Google Scholar 

  18. Zwanzig, R.: In: Lectures in Theoretical Physics. Vol. 3. New York: Interscience 1961

    Google Scholar 

  19. Zang, F.C., Rice, T.M.: Phys. Rev. B37, 3759 (1988)

    Google Scholar 

  20. Maekawa, S., Matsuura, T., Isawa, Y., Ebisawa, H.: Physica C152, 133 (1988)

    Google Scholar 

  21. Eskes, H., Sawatsky, A.: Phys. Rev. Lett.61, 1415 (1988)

    Google Scholar 

  22. Andrei, N., Coleman, P.: Phys. Rev. Lett.62, 595 (1989)

    Google Scholar 

  23. Horsch, P., Stephan, W.H., v. Szczepanski, K., Ziegler, M., von der Linden, W. Physica C162–164, 783 (1989)

    Google Scholar 

  24. Royama, T., Tachiki, M.: Physica C162–164, 1509 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Becker, K.W., Brenig, W. & Fulde, P. On the hole spectral function of the Emery model. Z. Physik B - Condensed Matter 81, 165–173 (1990). https://doi.org/10.1007/BF01309345

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309345

Keywords

Navigation