Skip to main content
Log in

On the role of oligosaccharide trimming in the maturation of sindbis and influenza virus

  • Original Papers
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

The α-glucosidase inhibitor bromoconduritol inhibits the formation of the N-linked, complex-type oligosaccharides of the glycoproteins from influenza viruses (fowl plague virus, influenza virus PR-8) and from sindbis virus. Viral glycoproteins produced in bromoconduritol-treated chickenembryo and baby-hamster kidney cells are fully glycosylated, but accumulate N-linked, high-mannose oligosaccharides of the composition Glc1Manx (GlcNAc)2 (x=7, 8, and 9). Other α-glucosidase inhibitors (nojirimycin, deoxynojirimycin, acarbose) were not specific inhibitors of oligosaccharide processing under the conditions used in the present investigation.

In bromoconduritol-treated, sindbis virus-infected chicken-embryo and baby-hamster kidney cells, the sindbis glycoproteins are metabolically stable. Specific proteolytic cleavage of the polyprotein precursors to form E2 and E1 occurs in bromoconduritol-treated chicken-embryo cells, but cleavage of PE2 to E2 is prevented in the infected baby-hamster kidney cells. Yet, release of infectious sindbis virus particles is inhibited in both cell types indicating that the formation of complex oligosaccharides is required for a late step in virus formation.

The release of virus particles from influenza virus PR-8-infected bromoconduritol-treated chicken-embryo cells is not inhibited, and virus with only high-mannose oligosaccharides is formed. In contrast, when chickenembryo cells were infected with the influenza virus fowl plague virus, release of infectious particles was inhibited. The fowl plague virus hemagglutinin is cleaved in chicken-embryo cells, in contrast to the hemagglutinin of the PR-8 virus. However, the cleavage products HA1 and HA2 do not reach the cell surface. In addition, or as a consequence, HA1 and HA2 are proteolytically broken down, whereas uncleaved hemagglutinin of PR-8 appeared metabolically stable. These results may explain the decrease in formation of fowl plague virus particles and the lack of effect on PR-8 virus in bromoconduritol-treated cells. This work thus shows different biological roles for oligosaccharide processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beyer, T. A., Sadler, J. E., Rearick, J. I., Paulson, J. C., Hill, R. L.: Glycosyltransferases and their use in assessing oligosaccharide structure and structure-function relationships. Adv. Enzymol.52, 23–175 (1981).

    Google Scholar 

  2. Bosch, F. X., Garten, W., Klenk, H.-D., Rott, R.: Proteolytic cleavage of influenza virus hemagglutinins: Primary structure of the connecting peptide between HA1 and HA2 determines proteolytic cleavability and pathogenicity of avian influenza viruses. Virology113, 725–735 (1981).

    Google Scholar 

  3. Bosch, J. V., Schwarz, R. T., Ziemiecky, A., Friis, R. R.: Oligosaccharide modifications and the site of processing of gPr 92env, the precursor for the viral glycoprotein of rous sarcoma virus. Virology119, 122–132 (1982).

    Google Scholar 

  4. Bracha, M., Schlesinger, M. J.: Defects in RNA+ temperature-sensitive mutants of sindbis virus and evidence for a complex of PE2 E1 viral glycoproteins. Virology74, 441–445 (1976).

    Google Scholar 

  5. Burke, D. J., Keegstra, K.: Purification and composition of the proteins from sindbis virus grown in chick and BHK-cells. J. Virol.20, 676–686 (1976).

    Google Scholar 

  6. Caliguiri, L. A., Tamm, I.: The role of cytoplasmic membranes in polio virus biosynthesis. Virology42, 100–111 (1970).

    Google Scholar 

  7. Datema, R., Schwarz, R. T., Jankowski, A. W.: Fluoroglucose-inhibition of protein glycosylationin vivo. Inhibition of mannose and glucose incorporation into lipid-linked oligosaccharides. Eur. J. Biochem.109, 331–341 (1980a).

    Google Scholar 

  8. Datema, R., Schwarz, R. T., Winkler, J.: Glycosylation of influenza virus proteins in the presence of fluoroglucose occurs via a different pathway. Eur. J. Biochem.110, 355–366 (1980b).

    Google Scholar 

  9. Datema, R., Schwarz, R. T.: Effect of energy depletion on the glycosylation of a viral glycoprotein. J. Biol. Chem.256, 11191–11198 (1981).

    Google Scholar 

  10. Datema, R., Romero, P. A., Legler, G., Schwarz, R. T.: Inhibition of formation of complex oligosaccharides by the glucosidase inhibitor bromoconduritol. Proc. Natl. Acad. Sci. U.S.A.79, 6787–6791 (1982).

    Google Scholar 

  11. Elbein, A. D., Dorling, P. R., Vosbeck, K., Horisberger, M.: Swainsonine prevents the processing of the oligosaccharide chains of influenza virus hemagglutinin. J. Biol. Chem.257, 1573–1576 (1982).

    Google Scholar 

  12. Grinna, L. S., Robbins, P. W.: Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J. Biol. Chem.254, 8814–8818 (1979).

    Google Scholar 

  13. Hetkamp, H., Bause, E., Legler, G.: Calf liver microsomal glucosidases: characterization and inhibition by various inhibitors. Hoppe-Seyler's Zeitschr. Physiol. Chem.363, 1019 (1982).

    Google Scholar 

  14. Hakimi, J., Atkinson, P. H.: Glycosylation of intracellular sindbis virus glycoproteins. Biochemistry21, 2140–2145 (1982).

    Google Scholar 

  15. Klenk, H.-D., Rott, R.: Cotranslational and posttranslational processing of virus glycoproteins. Curr. Top. Microbiol. Immunol.90, 19–48 (1980).

    Google Scholar 

  16. Klenk, H.-D., Rott, R., Orlich, M., Blödorn, J.: Activation of influenza A viruses by trypsin treatment. Virology68, 426–439 (1975).

    Google Scholar 

  17. Kornfeld, S.: Oligosaccharide processing during glycoprotein biosynthesis. In:Horowitz, M. I. (ed.), The glycoconjugates, Vol. III. New York: 1982.

  18. Kornfeld, S., Gregory, W., Chapman, A.: Class-E-Thy-1-negative mouse lymphona cells utilize an alternate pathway of oligosaccharide processing to synthesize complex-type oligosaccharides. J. Biol. Chem.259, 11649–11654 (1979).

    Google Scholar 

  19. Legler, G., Lotz, W.: Untersuchungen zum Wirkungsmechanismus glycosidspaltender Enzyme VII. Funktionelle Gruppen am aktiven Zentrum einer α-Glucosidase aus Sacch. cerevisiae. Hoppe-Seyler's Zeitschr. Physiol. Chem.354, 243–254 (1973).

    Google Scholar 

  20. Legler, G.: Glucosidases. Meth. Enzymol.46, 368–381 (1977).

    Google Scholar 

  21. Li, E., Tabas, I., Kornfeld, S.: The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J. Biol. Chem.253, 7762–7770 (1978).

    Google Scholar 

  22. Lohmeyer, J., Talens, L. T., Klenk, H.-D.: Biosynthesis of the influenza virus envelope in abortive infection. J. gen. Virol.42, 73–88 (1979).

    Google Scholar 

  23. Robbins, P. W., Hubbard, S. C., Turco, S. J., Wirth, D. F.: Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell12, 893–900 (1977).

    Google Scholar 

  24. Romero, P. A., Datema, R., Schwarz, R. T.: N-Methyl-1-deoxynojirimycin, a novel inhibitor of glycoprotein processing, and its effects on fowl plague virus maturation. Virology130, 238–242 (1983).

    Google Scholar 

  25. Saunier, B., Kilker, R. D., Tkacz, J. S., Quaroni, A., Herscovics, A.: Inhibition of N-linked complex oligosaccharide formation by 1-deoxy-nojirimycin, an inhibitor of processing glucosidases. J. Biol. Chem.257, 14155–14161 (1982).

    Google Scholar 

  26. Schlesinger, M. J., Malfer, C.: Cerulenin blocks fatty acid acylation of glycoproteins and inhibits vesicular stomatitis and sindbis virus particle formation. J. Biol. Chem.257, 9887–9890 (1982).

    Google Scholar 

  27. Schwarz, R. T., Rohrschneider, J. M., Schmidt, M. F. G.: Suppression of glycoprotein formation of semliki forest, influenza, and avian sarcoma viruses by tunicamycin. J. Virol.19, 782–791 (1976).

    Google Scholar 

  28. Schwarz, R. T., Datema, R.: The lipid pathway of protein glycosylation and its inhibitors. The biological significance of protein-bound carbohydrates. Adv. Carbohyd. Chem. Biochem.40, 287–379 (1982a).

    Google Scholar 

  29. Schwarz, R. T., Datema, R.: Inhibition of the dolichol pathway of protein glycosylation. Meth. Enzymol.83, 432–443 (1982b).

    Google Scholar 

  30. Sefton, B. M.: Immediate glycosylation of sindbis virus membrane proteins. Cell10, 659–668 (1977).

    Google Scholar 

  31. Simons, K., Garoff, H.: The budding mechanisms of enveloped animal viruses. J. gen. Virol.50, 1–21 (1980).

    Google Scholar 

  32. Tartakoff, A. M.: The Golgi complex: crossroads for vesicular traffic. Int. Rev. Exp. Pathol.22, 227–251 (1980).

    Google Scholar 

  33. Truscheit, E., Frommer, W., Junge, B., Müller, L., Schmidt, D. D., Wingender, W.: Chemie und Biochemie mikrobieller α-Glucosidase-Inhibitoren. Angewandte Chemie93, 738–755 (1981).

    Google Scholar 

  34. Tulsiani, D. R. P., Hubbard, S. C., Robbins, P. W., Touster, O.: α-Mannosidases of rat liver Golgi membranes. J. Biol. Chem.257, 3660–3668 (1982).

    Google Scholar 

  35. Turco, S. J., Pickard, J. L.: Altered G-protein glycosylation in vesicular stomatitis virus-infected, glucose deprived baby hamster kidney cells. J. Biol. Chem.257, 8674–8679 (1982).

    Google Scholar 

  36. Welch, W. J., Sefton, B. M.: Two small virus specific polypeptides are produced during infection with sindbis virus. J. Virol.29, 1186–1195 (1979).

    Google Scholar 

  37. Zimmerman, T., Schäfer, W.: Effect of p-fluorophenylalanine on fowl plague virus multiplication. Virology11, 676–698 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 6 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datema, R., Romero, P.A., Rott, R. et al. On the role of oligosaccharide trimming in the maturation of sindbis and influenza virus. Archives of Virology 81, 25–39 (1984). https://doi.org/10.1007/BF01309294

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309294

Keywords

Navigation