Skip to main content
Log in

Acoustic properties of amorphous SiO2 and PdSiCu, and of crystalline Ag, NbTi and Ta at very low temperatures

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

With the vibrating reed and vibrating wire techniques we have investigated the acoustic properties of vitreous silica (SiO2, Suprasil I) and of amorphous PdSiCu as well as of polycrystalline Ag, NbTi and Ta at frequencies of 100 Hz≦ω/2π<6 kHz and at temperatures of 0.1 mK≦T≦1 K. The relative change of sound velocity Δv/v of SiO2 shows saturation effects, strain amplitude dependence, as well as an unexpected temperature dependence below its maximum atT<50 mK. For PdSiCu we observe that below a certain temperature, which depends on the applied strain, the temperature dependence of the sound velocityv deviates from the logarithmic behavior observed at higher temperatures and reaches an almost constant value atT<1 mK. In the same temperature rangeQ −1 does not remain constant but steadily decreases. The acoustic properties of the two amorphous materials at finite strain show substantial deviations from the standard tunneling model. Some of the observed anomalies can be explained taking into account the change of population of the tunneling systems energy states and a nonlinear relaxation absorption. For polycrystalline Ag we find Δv/v αlnT andQ −1αT 1/3 over three decades inT atT<100 mK; it shows low-temperature acoustic properties which are strikingly similar to those of amorphous materials. The temperature and strain dependencies of the acoustic properties of polycrystalline superconducting NbTi and Ta resemble those obtained for SiO2. These results indicate that there are basically no differences in the low-temperature acoustic properties of polycrystals and amorphous materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips, W.A. (ed.); Amorphous Solids. Topics in Current Physics. Vol. 24. Berlin, Heidelberg, New York: Springer 1981

    Google Scholar 

  2. Hunklinger, S., Raychaudhuri, A.K. In: Progress in low temperature physics. Brewer, D.F. (ed.) Vol. IX. Amsterdam: North-Holland 1986

    Google Scholar 

  3. Raychaudhuri, A.K., Hunklinger, S.: Z. Phys. B — Condensed Matter57 113 (1984)

    Google Scholar 

  4. Esquinazi, P., Ritter, H.-M., Neckel, H., Weiss, G., Hunklinger, S.: Z. Phys. B — Condensed Matter64, 81 (1986)

    Google Scholar 

  5. Esquinazi, P., Luzuriaga, J.: Phys. Rev. B37, 7819 (1988)

    Google Scholar 

  6. Lichtenberg, F., Raad, H., Moor, W., Weiss, G.: In: Phonons 89. Hunklinger, S., Ludwig, W., Weiss, G. (eds.), p. 471. Singapore: World Scientific 1990

    Google Scholar 

  7. Vládar, K., Zawadowski, A.: Phys. Rev. B28, 1564 (1983)

    Google Scholar 

  8. Kagan, Yu., Prokof'ev, N.V.: Sov. Phys. JETP Lett.45, 91 (1987), Solid State Commun.65, 1385 (1988)

    Google Scholar 

  9. Kleiman, R.N., Agnolet, G., Bishop, D.J.: Phys. Rev. Lett.59, 2079 (1987)

    Google Scholar 

  10. Michailovich, R.E., Parpia, J.M.: Physica B165/166, 125 (1990)

    Google Scholar 

  11. Esquinazi, P., König, R., Pobell, F., Dietzel, F., Weiss, G., Hunklinger, S.: In: Phonons 89. Hunklinger., S., Ludwig, W., Weiss, G. (eds.), p. 423. Singapore: World Scientific

  12. Klein, M.W., Fischer, B., Anderson, A.C., Anthony, P.J.: Phys. Rev. B18, 5887 (1978)

    Google Scholar 

  13. Freeman, J.J., Anderson, A.C.: Phys. Rev. B34, 5684 (1986). See also [14]

    Google Scholar 

  14. Yu, C., Leggett, A.: In: Comments, Cond. Mat. Phys.4, 231 (1988), In: Phonons 89. Hunklinger, S., Ludwig, W., Weiss, G. (eds.) p. 432. Singapure: World Scientific 1990; C. Yu.: Phys. Rev. Lett.63, 1160 (1989); A. Leggett Physica B169, 322 (1991)

  15. Coppersmith, S.N.: Phys. Rev. Lett.67, 2315 (1991)

    Google Scholar 

  16. Gloos, K., Smeibidl, P., Kennedy, C., Singsaas, A., Sekowski, P., Mueller, R., Pobell, F.: J. Low Temp. Phys.73, 101 (1988)

    Google Scholar 

  17. Jäckle, J.: Z. Phys.257, 212 (1972)

    Google Scholar 

  18. See for example Black, J.C.: In: Metallic glasses. güntherodt, H.J. (ed.), p. 167. New York, Berlin, Heidelberg: Springer 1981

    Google Scholar 

  19. Cordie, P., Bellesa, G.: Phys. Rev. Lett.47, 106 (1981)

    Google Scholar 

  20. Araki, H., Park, G., Hikata, A., Elbaum, C.: Solid State Commun.32, 625 (1979); Phys. Rev. B21, 4470 (1980); Park, G., Hikata, A., Elbaum, C.: Phys. Rev. B23, 5597 (1981); J. Non-Crystalline Solids45, 93 (1981)

    Google Scholar 

  21. Arnold, W., Doussineau, P., Levelut, A.: J. Phys. Lett. (Paris)43, L-695 (1982)

    Google Scholar 

  22. Galperin, Yu.M., Gurevich Y.L., Parshin, D.A.: Sov. Phys. JETP59, 1004 (1985)

    Google Scholar 

  23. Berry, B.S., Pritchet W.C.: IBM J. Res. Dev.19, 334 (1975)

    Google Scholar 

  24. We are grateful to G. Weiss for giving this sample to us

  25. Thauer, P., Esquinazi, P., Pobell, F.: Physics B165/166, 905 (1990)

    Google Scholar 

  26. Supercon Inc., Shrewsbury, MA (USA)

  27. Goodfellow Metals, Cambridge (U.K.): 3N purity, annealed in factory

  28. Zeller, R.C., Pohl, R.O.: Phys. Rev. B4, 2029 (1971)

    Google Scholar 

  29. Matey, J., Anderson, A.C.: Phys. Rev. B16, 3406 (1977)

    Google Scholar 

  30. Lasjaunias, J.C., Ravex, A., Thoulouze, D.: J. Phys. F9, 803 (1979)

    Google Scholar 

  31. Schmidt, C.: Rev. Sci. Instrum.50, 454 (1979); Olson, J.R., Pohl, R.O.: Private communication

    Google Scholar 

  32. Stoker, J.J.: Nonlinear vibrations. New York: Interscience 1950

    Google Scholar 

  33. Esquinazi, P., Hunklinger, S.: Internal Report, Inst. f. Angew. Physik II, Universität Heidelberg 1985 (unpublished)

  34. Lorenz, W., Esquinazi, P.: (unpublished)

  35. The numerical integration has been carried out with the variablesE andu=Δ 0/E. One would also tend to increase the limitu min (∼Δ 0, min/E maxE min/E max) due to the increase inE min. However, this limit has an influence at high temperatures only. Moreover, and to be consistent with the TM, the value ofu min can be obtained from heat release experiments and should not be taken as variable, see M. Deye, P. Esquinazi In: [6]

    Google Scholar 

  36. Van Cleve, J.E., Chevrier, J., Pohl, R.O.: In: Phonons 89. Hunklinger, S., Ludwig, W., Weiss, G. (eds.), p. 579. Singapore: World Scientific 1990

    Google Scholar 

  37. Phillips, W.: Phys. Rev. Lett.61, 2632 (1988)

    Google Scholar 

  38. Stockburger, J., Weiss, U., Görlich, R.: Z. Phys. B — Condensed Matter84, 457 (1991)

    Google Scholar 

  39. Hikata, A., Cibuzar, G., Elbaum, C.: J. Low Temp. Phys.49, 341 (1982)

    Google Scholar 

  40. Golding, B., Graebner, J.E.: Phys. Rev. Lett.37, 852 (1976)

    Google Scholar 

  41. Since one would expectI c1 to decrease and τ2 to increase at lower temperatures it may be possible that the influence of theirT-dependences on Δv/v is diminished according to our estimations

  42. Stosch, S.: Diplomarbeit, Universität Bayreuth, 1991 (unpublished)

  43. Hikata, A., Elbaum, C.: Phys. Rev. Lett.54, 2418 (1985)

    Google Scholar 

  44. Neumaier, K., Wipf, H., Cannelli, G., Cantelli, R.: Phys. Rev. Lett.49, 1423 (1982); H. Wipf, K. Neumaier: Phys. Rev. Lett.52, 1308 (1984)

    Google Scholar 

  45. Morr, W., Müller, A., Weiss, G., Wipf, H., Golding, B.: Phys. Rev. Lett.63, 2084 (1989)

    Google Scholar 

  46. Cannelli, G., Cantelli, R., Vertechi, G.: Appl. Phys. Lett.39, 832 (1981)

    Google Scholar 

  47. Cannelli, G., Cantelli, R., Cordero, F.: Phys. Rev. B34, 7721 (1986)

    Google Scholar 

  48. Cannelli, G., Cantelli, R.: Solid State Commun.43, 567 (1982)

    Google Scholar 

  49. Poker, D.B., Setser, G.G., Granato, A.V., Birnbaum, H.K.: Phys. Rev. B29, 622 (1984)

    Google Scholar 

  50. Schwark, M., Pobell, F., Kubota, M., Mueller, R.M.: J. Low Temp. Phys.58, 171 (1985)

    Google Scholar 

  51. Magerl, A., Dianoux, A., Wipf, H., Neumaier, K., Anderson, I.S.: Phys. Rev. Lett.56, 159 (1986)

    Google Scholar 

  52. Esquinazi, P., Durán, C., Fainstein, C., Núñez Regueiro, M.: Phys. Rev. B37, 545 (1988). G. Weiss, S. Hunklinger, v. Löhneysen, H.: Phys. Lett. A85, 84 (1981)

    Google Scholar 

  53. König, R., Esquinazi, P., Pobell, F.: J. Low Temp. Phys 4 (submitted for publication)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esquinazi, P., König, R. & Pobell, F. Acoustic properties of amorphous SiO2 and PdSiCu, and of crystalline Ag, NbTi and Ta at very low temperatures. Z. Physik B - Condensed Matter 87, 305–321 (1992). https://doi.org/10.1007/BF01309284

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309284

Keywords

Navigation