Skip to main content
Log in

Exciton-polaritons in halfspace

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

A rigorous method is presented describing the coupling between an exciton polariton in a halfspace semiconductor and the external driving field. The method is based on density matrix theory. It allows to consider realistic electron-hole interactions, spatial dispersion and extrinsic surface potentials. Without invoking additional boundary conditions or an artificial subdivision of the semiconductor it is shown that the influence of the surface can be isolated from the bulk behaviour. This is accomplished by a symmetric continuation of the restricted configuration space to bulk geometry inspired by the image source method in electrostatics. As a demonstration the solution is worked out for a simplified polariton model. The results are compared with other theories and with experimental reflection spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balslev, I.: Comments Cond. Mat. Phys.13, 21 (1987)

    Google Scholar 

  2. Hopfield, J.J.: Phys. Rev.112, 1555 (1958)

    Google Scholar 

  3. Birman, J.L.: Electrodynamic and non-local optical effects mediated by exciton polaritons. In: Rashba, E.I., Sturge, M.D. (eds.). Excitons, Modern problems in condensed matter sciences. Vol. 2 Amsterdam: North-Holland 1982

    Google Scholar 

  4. D'Andrea, A., Del Sole, R.: Phys. Rev. B38, 1197 (1988)

    Google Scholar 

  5. Axt, V.M., Stahl, A.: Solid State Commun.77, 189 (1991)

    Google Scholar 

  6. Pekar, S.I. [translation]: Sov. Phys. JETP6, 785; and34, 813 (1958)

    Google Scholar 

  7. Hopfield, J.J., Thomas, D.G.: Phys. Rev.132 2, 563 (1963)

    Google Scholar 

  8. Birman, J.L., Sein, J.J.: Phys. Rev. B6 6, 2482 (1972)

    Google Scholar 

  9. Ting, C.-S., Frankel, M.J., Birman, J.L.: Solid State Commun.17, 1285 (1975)

    Google Scholar 

  10. Huhn, W., Stahl, A.: Phys. Status Solidi B124, 167 (1984)

    Google Scholar 

  11. Hostler, L.C.: J. Math. Phys.5, 591 (1964); ibid. J. Math. Phys.11, 2966 (1970)

    Google Scholar 

  12. Mattis, D.C., Beni, G.: Phys. Rev. B18, 3816 (1978). This paper for the first time to our knowledge uses a symmetrically continued potential likeV +. The authors discuss the simplified model used in Sect. 4 with the additional assumption of equal electron and hole masses. The special symmetry (z,Z)h=(Z,z) leads to an analytic solution of the exciton Schrödinger-equation in a slab of arbitrary thickness

    Google Scholar 

  13. Stahl, A.: Phys. Status Solidi B94, 221 (1979)

    Google Scholar 

  14. Czajkowski, G., Chen, Y., Schillak, P.: Nuovo Cimento D11, 839 (1989)

    Google Scholar 

  15. Stahl, A., Balslev, I.: Electrodynamics of the semiconductor band edge. Springer Tracts in Modern Physics, Stahl, A., Balslev, J. (eds.). Vol. 110. Berlin, Heidelberg, New York: Springer 1987

    Google Scholar 

  16. Sell, D.D., Stokowski, S.E., Dingle, R., Di Lorenzo, J.V.: Phys. Rev. B7, 4568 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Victor, K., Axt, V.M. & Stahl, A. Exciton-polaritons in halfspace. Z. Physik B - Condensed Matter 92, 35–41 (1993). https://doi.org/10.1007/BF01309164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01309164

PACS

Navigation