Skip to main content
Log in

The simplified Hubbard model in one and two dimensions

Thermodynamic and dynamic properties

  • Original Contributions
  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Thermodynamic and dynamic properties of the one and two-dimensional simplified Hubbard model are studied. At zero temperature and half filling, no metal-insulator transition occurs for nonzero couplingU and the system is an antiferromagnetic insulator. The behavior of the gap in the single-particle density of states is investigated as a function ofU, temperature and band fillingp. For weak to intermediate coupling the gap at half filling closes for increasing temperatures. The ground state of doped lattices exhibits a metal-insulator transition at −4d<U c (p)≦−2d (d is the lattice dimensionality) and displays ferromagnetism without long-range order forU>U c . The co-existence for variable temperatures and electron densities of metallic behavior and magnetic and charge-density long-range order is demonstrated. The critical temperature for long-range order is calculated for the half-filled two-dimensional case. Results for the optical conductivity and several thermodynamic properties are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Micnas, R., Ranninger, J., Robaskiewicz, S.: Rev. Mod. Phys.62, 113 (1990)

    Google Scholar 

  2. Lieb, E., Wu, F.Y.: Phys. Rev. Lett.20, 1445 (1968)

    Google Scholar 

  3. Metzner, W., Vollhardt, D.: Phys Rev. Lett.62, 324 (1989)

    Google Scholar 

  4. Janiš, V.: Z. Phys. B83, 227 (1991)

    Google Scholar 

  5. Georges, A., Kotliar, G.: Phys. Rev. B45, 6479 (1992)

    Google Scholar 

  6. Jarrell, M.: Phys. Rev. Lett.69, 168 (1992)

    Google Scholar 

  7. Rozenberg, M.J., Zhang, X.Y., Kotliar, G.: Phys. Rev. Lett.69, 1236 (1992); Zhang, X.Y., Rozenberg, M.J., Kotliar, G.: Phys. Rev. Lett.70, 1666 (1993)

    Google Scholar 

  8. Georges, A., Krauth, W.: Phys. Rev. Lett.69, 1240 (1992)

    Google Scholar 

  9. Jarrell, M., Pruschke, T.: Z. Phys. B90, 187 (1993)

    Google Scholar 

  10. Varma, C.M., Littlewood, P.B., Schmitt-Rink, S., Abrahams, E., Ruckenstein, A.E.: Phys. Rev. Lett.63, 1996 (1989)

    Google Scholar 

  11. Anderson, P.W.: Phys. Rev. Lett.64, 1839 (1990); ibid.65, 2306 (1990)

    Google Scholar 

  12. Kampf, A.P., Schrieffer, J.R.: Phys. Rev. B41, 6399 (1990); ibid.42, 7967 (1990)

    Google Scholar 

  13. Dagotto, E., Moreo, A., Ortolani, F., Riera, J., Scalapino, D.J.: Phys. Rev. Lett.67, 1918 (1991)

    Google Scholar 

  14. Dagotto, E., Ortolani, F., Scalapino, D.J.: Phys. Rev. B46, 3183 (1992)

    Google Scholar 

  15. White, S.R.: Phys. Rev. B44, 4670 (1991); ibid.46, 5678 (1992);

    Google Scholar 

  16. Feng, G.S., White, S.R.:ibid46, 8691 (1992)

    Google Scholar 

  17. Hubbard, J.: Proc. R. Soc. London Ser. A276, 238 (1963); ibid.281, 401 (1964)

    Google Scholar 

  18. Kennedy, T., Lieb, E.H.: Physica A138, 320 (1986); ibid.140, 240 (1986)

    Google Scholar 

  19. Brandt, U., Schmidt, R.: Z. Phys. B63, 45 (1986); ibid.67, 43 (1986)

    Google Scholar 

  20. Brandt, U., Mielsch, C.: Z. Phys. B75, 365 (1989)

    Google Scholar 

  21. Dongen, P.G.J. van: Phys. Rev. B45, 2267 (1992)

    Google Scholar 

  22. Falicov, L.M., Kimball, J.C.: Phys. Rev. Lett.22, 997 (1969)

    Google Scholar 

  23. Barma, M., Subrahmanyam, V.: Phase Transitions16/17, 303 (1989)

    Google Scholar 

  24. Brandt, U., Mielsch, C.: Z. Phys. B79, 295 (1990); ibid.82, 37 (1991)

    Google Scholar 

  25. Jędrejewski, J., Lach, J., Lyzwa, R.: Physica A154, 529 (1989)

    Google Scholar 

  26. Freericks, J.K., Falicov, L.M.: Phys. Rev. B41, 2163 (1990)

    Google Scholar 

  27. Gruber, C., Jędrejewski, J., Lemberger, P.: J. Stat. Phys.66, 913 (1992)

    Google Scholar 

  28. Si, Q., Kotliar, G., Georges, A.: Phys. Rev. B46, 1261 (1992)

    Google Scholar 

  29. Some of the present results for the half-filled case were presented in: Vries, P. de, Michielsen, K., Raedt, H. De: Phys. Rev. Lett.70, 2463 (1993)

    Google Scholar 

  30. Michielsen, K.: Int. J. Mod. Phys. B7, 2571 (1993)

    Google Scholar 

  31. Friedel, J., Lenghart, P., Leman, G.: J. Phys. Chem. Solids25, 781 (1964)

    Google Scholar 

  32. Montorsi, A., Rasetti, M.: Phys. Rev. Lett.66, 1383 (1991); Int. J. Mod. Phys. B5, 985 (1991)

    Google Scholar 

  33. Michielsen, K., Raedt, H. De, Schneider, T.: Phys. Rev. Lett.68, 1410 (1992)

    Google Scholar 

  34. Möller, G., Ruckenstein, A.E., Schmitt-Rink, S.: Phys. Rev. B46, 7427 (1992)

    Google Scholar 

  35. Raedt, H. De, Linden, W. von der: The Monte Carlo method in condensed matter physics. Binder, K. (ed.). Berlin, Heidelberg, New York, Tokyo: Springer 1992

    Google Scholar 

  36. Gubernatis, J.E., Jarrell, M., Silver, R.N., Sivia, D.S.: Phys. Rev. B44, 6011 (1991)

    Google Scholar 

  37. Shiba, H.: Prog. Theor. Phys.48, 2171 (1972)

    Google Scholar 

  38. Brandt, U., Urbanek, M.P.: Z. Phys. B89, 297 (1992)

    Google Scholar 

  39. Economou, E.N., White, C.T., DeMarco, R.R.: Phys. Rev. B10, 3946, 3959, 3968 (1978)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vries, P., Michielsen, K. & De Raedt, H. The simplified Hubbard model in one and two dimensions. Z. Physik B - Condensed Matter 92, 353–362 (1993). https://doi.org/10.1007/BF01308754

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01308754

PACS

Navigation