Skip to main content
Log in

Plasmon dispersion in Beryllium

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We have measured the plasmon dispersion in polycrystalline Beryllium at wave vectors up tok=1.29 Å−1 with electron energy loss spectroscopy. The plasmon energy is 18.8±0.1 eV, the fitted quadratic dispersion coefficient is α=0.36±0.03 for 0<k<1.29 Å−1 and α L =0.52+0.04 fork<0.55 Å−1. We compare our results with the plasmon dispersion in other simple metals and point out discrepancies with the theories of the homogeneous electron gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pines, D.: Elementary excitations in solids. New York: W.A. Benjamin Inc. 1984

    Google Scholar 

  2. Raether, H.: Excitations of plasmons and interband transitions by electrons. In: Springer Tracts in Modern Physics. Höhler, G. (ed.), Vol. 88. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  3. Platzmann, P.M., Wolff, P.A.: Waves and interactions in solid state plasmas. New York: Academic Press 1973

    Google Scholar 

  4. Vashishta, P., Singwi, K.S.: Phys. Rev. B6, 875 (1972)

    Google Scholar 

  5. Awa, K., Yasuhara, H., Asahi, T.: Solid State Commun.38, 285 (1981)

    Google Scholar 

  6. Watanabe, H.: J. Phys. Soc. Jpn.11, 112 (1956)

    Google Scholar 

  7. Sueoka, O.: J. Phys. Soc. Jpn.20, 2203 (1965)

    Google Scholar 

  8. Aiyama, T., Yada, K.: J. Phys. Soc. Jpn.36, 1554 (1974)

    Google Scholar 

  9. Hartl, W.A.M.: Z. Phys.191, 487 (1966)

    Google Scholar 

  10. Eickmans, J., Möller, H., Otto, A.: Z. Phys. B—Condensed Matter46, 99 (1982)

    Google Scholar 

  11. Daniels, J., Festenberg, C. v., Raether, H., Zeppenfeld, K.: In: Springer Tracts in Modern Physics, Vol. 54, p. 77. Berlin, Heidelberg, New York: Springer 1970

    Google Scholar 

  12. This shift is caused by the ΔE-dependent factor\(F = \left( {\left( {\frac{{\Delta {\rm E}}}{{2E_0 }}} \right.} \right)^2 + \left. {\left( {\frac{{\Delta k}}{{k_0 }}} \right)^2 } \right)^{ - 1}\) of the loss probability which is proportional toF Im\(\left( {\frac{1}{\varepsilon }} \right)\) where ΔE is the energy loss,E 0=30 keV, Δk=0.05 Å−1 andk 0 the wavenumber of the incident electrons. The influence of this factor becomes noticable for relatively large halfwidths of the plasmon lines, see Fig. 1

  13. Eisenberger, P., Platzmann, P.M., Pandy, K.C.: Phys. Rev. Lett.31, 311 (1973)

    Google Scholar 

  14. Sturm, K.: Adv. Phys.31, 1 (1982)

    Google Scholar 

  15. Sturm, K.: Solid State Commun.27, 645 (1978)

    Google Scholar 

  16. Möller, H., Otto, A.: Phys. Rev. Lett.45, 2140 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diekmann, W., Eickmans, J. & Otto, A. Plasmon dispersion in Beryllium. Z. Physik B - Condensed Matter 65, 39–41 (1986). https://doi.org/10.1007/BF01308397

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01308397

Keywords

Navigation