Skip to main content
Log in

Thin CdS platelets — a model case for the study and optimization of thermally induced absorptive and dispersive optical bistability

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Thermally induced optical bistability of thin CdS platelets is shown to be a highly suitable model case for the study of interactions between absorptive and dispersive switching mechanisms. Beyond previous studies concerning this type of bistability, systematic investigations were necessary to obtain a set of optimization criteria concerning a desired hysteresis feature. Despite the fact that thermally induced bistability of CdS may exhibit too long switching times for application in optoelectronics, it is a valuable system for the investigation of general features of bistable processes in a very detailed manner and for the development of reliable quantitative models. The appearance of different forms of thermally induced optical bistability in CdS is discussed in dependence of switching power, temperature, shallow-impurity concentration, and of system as well as of sample configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Klingshirn, C., Wegener, M., Dörnfeld, C., Lambsdorff, M., Bigot, J.Y., Fidorra, F.: Optical bistability III. Proceedings of the Topical Meeting on Optical Bistability. Tucson (Arizona, USA) 1985. In: Springer Proceedings in Physics. Gibbs, H.M., Mandel, P., Peyghambarian, N., Smith, S.D. (eds.), Vol. 8, p. 129. Berlin, Heidelberg, New York: Springer 1986

    Google Scholar 

  2. Lambsdorff, M., Dörnfeld, C., Klingshirn, C.: Z. Phys. B — Condensed Matter64, 409 (1986)

    Google Scholar 

  3. Haddad, I., Kretzschmar, M., Rossmann, H., Henneberger, F.: Phys. Status Solidi B138, 235 (1986)

    Google Scholar 

  4. Henneberger, F., Puls, J., Rossmann, H., Spiegelberg, Ch., Kretzschmar, M., Haddad, I.: Phys. Scri. T13, 195 (1986)

    Google Scholar 

  5. Wegener, M., Klingshirn, C.: Phys. Rev. A35, 1740 (1987)

    Google Scholar 

  6. Wegener, M., Klingshirn, C.: Phys. Rev. A35, 4247 (1987)

    Google Scholar 

  7. Bigot, J.-Y., Daunois, A., Cherkaoui Eddeqaqi, N., Oberle, J., Wegener, M., Klingshirn, C.: International Conference on ‘Optical Bistabillity’ IV, Aussois (France) 1988, J. Phys. (Paris)49 Colloq. C2, 153 (1988)

  8. Wegener, M., Witt, A., Klingshirn, C., Gnass, D., Iyechika, Y., Jäger, D.: International Conference on ‘Optical Bistability’ IV, Aussois (France) 1988, J. Phys. (Paris)49 Colloq. C2, 109 (1988)

  9. Dneprovskii, V.S., Furtichev, A.I., Klimov, V.I., Nazvanova, E.V., Okorokov, D.K., Vandihev, U.V.: Phys. Status Solidi B146, 341 (1988)

    Google Scholar 

  10. Gutowski, J., Hönig, T., Hollandt, J., Broser, I.: Proceedings of the 19th International Conference on the Physics of Semiconductors, Warsaw (Poland) 1988. Zawadzki, W. (ed.), p. 1311. Inst. of Physics, Polish Academy of Sciences (1988)

  11. Miller, D.A.B.: J. Opt. Soc. Am. B1, 857 (1984)

    Google Scholar 

  12. Hajto, J., Janossy, I.: Philos. Mag. B47, 347 (1983)

    Google Scholar 

  13. Eichler, H.J.: Laser Optoelektron.1, 59 (1988)

    Google Scholar 

  14. Witt, A., Wegener, M., Lyssenko, V.G., Klingshirn, C., Wingen, G., Iyechika, Y., Jäger, D., Müller-Vogt, G., Sitter, H., Heinrich, H., Mackenzie, H.A.: IEEE J. Quant. Electron.24, 2500 (1988)

    Google Scholar 

  15. Wegener, M.: PhD thesis, Frankfurt (FRG) 1987

  16. Hoang Xuan Nguyen, Zimmermann, R.: Phys. Status Solidi B124, 191 (1984)

    Google Scholar 

  17. Henneberger, F.: Phys. Status Solidi B137, 371 (1986)

    Google Scholar 

  18. Fidorra, F., Wegener, M., Bigot, J.Y., Hönerlage, B., Klingshirn, C.: J. Luminescence35, 43 (1986)

    Google Scholar 

  19. Urbach, F.: Phys. Rev.92, 1324 (1953)

    Google Scholar 

  20. Martienssen, W.: J. Phys. Chem. Solids2, 257 (1958)

    Google Scholar 

  21. Dutton, D.: Phys. Rev.112, 785 (1958)

    Google Scholar 

  22. Kurik, M.: Phys. Status Solidi A8, 9 (1971)

    Google Scholar 

  23. Spiegelberg, S., Gutsche, E., Voigt, J.: Phys. Status Solidi B77, 233 (1976)

    Google Scholar 

  24. Gobrecht, H., Bartschat, A.: z. Phys.156, 131 (1959)

    Google Scholar 

  25. Langer, D.W.: J. Appl. Phys.37, 3530 (1966)

    Google Scholar 

  26. Unger, K., Schneider, H.G.: Verbindungshalbleiter. Leipzig: p. 144. Akademische Verlagsgesellschaft Geest und Portig K.-G.

  27. Kretzschmar, M., Henneberger, F., Rossmann, H., Haddad, I.: Phys. Status Solidi B143, K71 (1987)

    Google Scholar 

  28. Broser, I., Broser, R., Beckmann, E., Birkicht, E.: Solid State Commun.39, 1209 (1981)

    Google Scholar 

  29. Brodin, M.S., Vitrikhovskii, N.I., Kurik, M.V.: Phys. Status Solidi B10, 525 (1965)

    Google Scholar 

  30. Vitrikhovskii, N.I., Gnatenko, Yu.P., Kurik, M.V.: Ukr. Fiz. Zh.15, 842 (1970)

    Google Scholar 

  31. Lisitsa, M.P., Valakh, M.Ya., Terekhova, S.F.: Fiz. Tverd. Tela8, 305 (1966) (Sov. Phys.-Solid State8, 251 (1966))

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutowski, J., Hollandt, J. & Broser, I. Thin CdS platelets — a model case for the study and optimization of thermally induced absorptive and dispersive optical bistability. Z. Physik B - Condensed Matter 76, 547–557 (1989). https://doi.org/10.1007/BF01307906

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307906

Keywords

Navigation