Zeitschrift für Physik B Condensed Matter

, Volume 78, Issue 2, pp 281–288 | Cite as

Symmetries and broken symmetries in a model of disordered polyacetylene

  • K. Ziegler


A random model on a chain is considered as a description of doped polyacetylene. Its Hamiltonian is invariant under a discrete chiral transformation. The density of states at the center of the band gap serves as an order parameter for symmetry breaking. We find that the randomness breaks the symmetry spontaneously. This result is in opposition to previous calculations in the continuum limit, where the symmetry is preserved. A consequence of the non-vanishing density of states is a non-vanishing conductance for the half-filled band due to thermal activated hopping.


Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Several articles in: Physics in one dimension. Bernasconi, J., Schneider, T. (eds.). Berlin, Heidelberg, New York: Springer 1980Google Scholar
  2. 2a.
    Su, W.P., Schrieffer, J.R., Heeger, A.J.: Phys. Rev. B22, 2099 (1980);Google Scholar
  3. 2b.
    Jackiw, R., Schrieffer, J.R.: Nucl. Phys. B190 (FS3), 253 (1981)Google Scholar
  4. 3.
    Xu, B., Trullinger, S.E.: Phys. Rev. Lett.57, 3113 (1986)Google Scholar
  5. 4.
    Ziegler, K.: Phys. Rev. Lett.59, 152 (1987)Google Scholar
  6. 5a.
    Schäfer, L., Wegner, F.: Z. Phys. B — Condensed Matter38, 113 (1980);Google Scholar
  7. 5b.
    Pruisken, A.M.M., Schäfer, L.: Nucl. Phys. B200 (FS4), 20 (1982)Google Scholar
  8. 6.
    Kogut, J., Stone, M., Wyld, H.W., Shenker, S.H., Shigemitsu, J., Sinclair, D.K.: Nucl. Phys. B225 (FS9), 326 (1983)Google Scholar
  9. 7.
    Ziegler, K.: Nucl. Phys. B285, (FS19), 606 (1987)Google Scholar
  10. 8.
    Ziegler, K.: Commun. Math. Phys.120, 177 (1988)Google Scholar
  11. 9.
    Bardeen, J., Cooper, L., Schrieffer, J.: Phys. Rev.108, 1175 (1957)Google Scholar
  12. 10a.
    Miller, A., Abrahams, E.: Phys. Rev.120, 745 (1960);Google Scholar
  13. 10b.
    Mott, N.F.: Metal-insulator transitions. London: Taylor and Francis 1974Google Scholar
  14. 11.
    Ruelle, D.: Statistical Mechanics. Reading: Benjamin 1969Google Scholar
  15. 12.
    Wegner, F.: Z. Phys. B — Condensed Matter44, 9 (1981)Google Scholar
  16. 13.
    Lloyd, J.: J. Phys. C2, 1717 (1969)Google Scholar
  17. 14.
    Basescu, N., Liu, Z., Moses, D., Heeger, A., Naarmann, H., Theophilou, N.: Nature327, 403 (1987)Google Scholar
  18. 15.
    Schimmel, Th., Rieß, W., Gmeiner, J., Denninger, G., Schwoerer, M.: Solid State Commun.43, 117 (1988)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • K. Ziegler
    • 1
  1. 1.Service de Physique ThéoriqueCEN SaclayGif-sur-YvetteFrance

Personalised recommendations