Zeitschrift für Physik B Condensed Matter

, Volume 78, Issue 2, pp 241–253 | Cite as

Many body contributions to the electronic structure of nickel

  • W. Borgiel
  • W. Nolting


The full temperature-dependence of the electronic quasiparticle properties of ferromagnetic Ni is investigated by use of a theoretical model, which takes into account all intraatomic interactions in thed-band complex. After introduction of “effective” spin operators the model-Hamiltonian consists of a one-particle term, an intraband-interaction of Hubbardtype, and an interband-exchange as in thes-f (ord-f model. The one-particle energies are taken from a realistic bandstructure calculation in order to incorporate approximately all those interactions, which are not directly covered by our model. The model contains two parameters, the intraband couplingU and the interband exchangeJ. ChoosingU=6 eV,J=0.4 eV and applying a Green-function technique we get results in almost quantitative agreement with the experiment:Tc=635 K,m(T=0)=0.56 [ B , Curie-Weiss behaviour of the static susceptibility, satellite peak with temperature-dependent spinpolarization some 6 eV below the chemical potential μ, exchange splittings atT=0 of order 0.2–0.35 eV. The full temperature-dependencies of the electronic selfenergy, the one-particle spectral density, the quasiparticle density of states, and the quasiparticle bandstructure for two high symmetry directions are derived and discussed.


Nickel Neural Network Nonlinear Dynamics Spectral Density Quantitative Agreement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review: Metallic magnetism. In: Topics in Current Physics. Capellmann, H. (ed.), Vol. 42. Berlin, Heidelberg, New York: Springer 1987Google Scholar
  2. 2.
    Wang, C.S., Callaway, J.: Phys. Rev. B15, 298 (1977)Google Scholar
  3. 3.
    Davis, L.C.: J. Appl. Phys.59, R25 (1986)Google Scholar
  4. 4.
    Friedel, J., Sayers, C.M.: J. Phys. (Paris)38, 697 (1977)Google Scholar
  5. 5.
    Kajzar, F., Friedel, J.: J. Phys. (Paris)39, 397 (1978)Google Scholar
  6. 6.
    Eastman, D.E., Himpsel, F.J., Knapp, J.A.: Phys. Rev. Lett.40, 1514 (1978)Google Scholar
  7. 7.
    Dietz, E., Gerhardt, U., Maetz, C.: Phys. Rev. Lett.40, 892 (1978)Google Scholar
  8. 8.
    Himpsel, F.J., Knapp, J.A., Eastman, D.E.: Phys. Rev. B19, 2919 (1979)Google Scholar
  9. 9.
    Eastman, D.E., Himpsel, F.J., Knapp, J.A.: Phys. Rev. Lett.44, 95 (1980)Google Scholar
  10. 10.
    Eberhardt, W., Plummer, E.W.: Phys. Rev. B21, 3245 (1980)Google Scholar
  11. 11.
    Guillot, C., Ballu, Y., Paigne, J., Lecante, J., Jain, K.P., Thiry, P., Pinchaux, R., Petroff, Y., Falicov, L.M.: Phys. Rev. Lett.39, 1632 (1977)Google Scholar
  12. 12.
    Sakisaki, Y., Komeda, K., Ouchi, M., Kato, H., Masuda, S., Yagi, K.: Phys. Rev. Lett.58, 733 (1987)Google Scholar
  13. 13.
    Raaen, S., Murgai, V.: Phys. Rev. B36, 887 (1987)Google Scholar
  14. 14.
    Clauberg, R., Gudat, W., Kisker, E., Kuhlmann, E., Rothberg, G.M.: Phys. Rev. Lett.47, 1314 (1981)Google Scholar
  15. 15.
    Treglia, G., Ducastelle, F., Spanjaard, D.: J. Phys. (Paris)43, 341 (1982)Google Scholar
  16. 16.
    Liebsch, A.: Phys. Rev. Lett.43, 1431 (1979)Google Scholar
  17. 17.
    Liebsch, A.: Phys. Rev. B23, 5203 (1981)Google Scholar
  18. 18.
    Penn, D.R.: Phys. Rev. Lett.42, 921 (1979)Google Scholar
  19. 19.
    Davis, L.C., Feldkamp, L.A.: Solid State Commun.34, 141 (1980)Google Scholar
  20. 20.
    Oles, A.M., Stollhoff, G.: Phys. Rev. B29, 314 (1984)Google Scholar
  21. 21.
    Kleinmann, L., Mednick, K.: Phys. Rev. B24, 6880 (1981)Google Scholar
  22. 22.
    Taranko, R., Taranko, E., Male, J.: J. Phys. F18, L87 (1988)Google Scholar
  23. 23.
    Mermin, D.: Phys. Rev.137A, 1441 (1965)Google Scholar
  24. 24.
    Nolting, W., Borstel, G., Borgiel, W.: Phys. Rev. B35, 7015 (1987)Google Scholar
  25. 25.
    Nolting, W., Borgiel, W., Borstel, G.: Phys. Rev. B35, 7025 (1987)Google Scholar
  26. 26.
    Nolting, W., Borgiel, W., Borstel, G.: Phys. Rev. B37, 7663 (1988)Google Scholar
  27. 27.
    Nolting, W., Borgiel, W., Dose, V., Fauster, Th.: Phys. Rev. B (in press)Google Scholar
  28. 28.
    Hubbard, J.: Proc. R. Soc. London A276, 238 (1963)Google Scholar
  29. 29.
    Hubbard, J.: Proc. R. Soc. London A277, 237 (1964)Google Scholar
  30. 30.
    Capellmann, H.: Z. Phys. B-Condensed Matter and Quanta34, 29 (1979)Google Scholar
  31. 31.
    Papaconstantopoulos, D.A.: Handbook of the band structure of elemental solids, New York: Plenum Press 1986Google Scholar
  32. 32.
    Nolting, W., Borgiel, W.: Phys. Rev. B39, 6962 (1989)Google Scholar
  33. 33.
    Hirooka, S., Shimizu, M.: Phys. Lett.46A, 209 (1973)Google Scholar
  34. 34.
    The valueJ=0.8 eV given in Ref. 26 is erraneousGoogle Scholar
  35. 35.
    Darby, M.I.: Br. J. Appl. Phys.18, 1415 (1967)Google Scholar
  36. 36.
    Arajs, S., Colvin, R.V.: J. Phys. Chem. Solids24, 1233 (1963)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • W. Borgiel
    • 1
  • W. Nolting
    • 1
  1. 1.Fachbereich PhysikUniversität OsnabrückOsnabrückGermany

Personalised recommendations