Skip to main content
Log in

Crossover from Coulomb-blockade to ohmic conduction in small tunnel junctions

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

We discuss the suppression of Coulomb effects in the low temperature conductanceg(T) of small tunnel junctions with increasing dissipation or bare conductanceg. The conductance is expressed in terms of the spin correlation fuction of a classical one dimensionalXY-model with ferromagnetic nearest neighbor plus inverse square interaction. It is shown that at low temperatures the conductance vanishes asymptotically likeT 2 instead of exponentially. A Coulomb gap in the sense of a thermally activated contribution tog(T) is present only for bare conductances smaller thang c ∼1. A simple model for the spin correlation functions is compared with experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Averin, D.V., Likharev, K.K.: In: Mesoscopic phenomena in solids. Altshuler, B.L., Lee, P.A., Webb, R.A. (eds.) Amsterdam: Elsevier 1991

    Google Scholar 

  2. Schön, G., Zaikin, A.D.: Phys. Rep.198, 237, (1990)

    Google Scholar 

  3. Geerligs, L.J., Anderegg, V.F., Jeugd, C.A. van der, Romijn, J., Mooij, J.E.: Europhys. Lett.10, 79 (1989)

    Google Scholar 

  4. Averin, D.V., Likharev, K.K.: J. Low Temp. Phys.62, 345 (1986)

    Google Scholar 

  5. Ho, T.L.: Phys. Rev. Lett.51, 2060 (1983)

    Google Scholar 

  6. Ben-Jacob, E., Mottola, E., Schön, G.: Phys. Rev. Lett.51, 2064 (1983)

    Google Scholar 

  7. Mermin, N.D.: J Math. Phys.8, 1061 (1967)

    Google Scholar 

  8. Simanek, F.: Phys. Lett.119A, 477 (1987)

    Google Scholar 

  9. Griffiths, R.B.: J. Math. Phys.8, 478 (1967)

    Google Scholar 

  10. Ginibre, J.: Commun. Math. Phys.16, 310 (1970)

    Google Scholar 

  11. Aizenman, M., Simon, B.: Phys. Lett.76A, 281 (1980)

    Google Scholar 

  12. Anderson, P.W., Yuval, G., Hamann, D.R.: Phys. Rev. B1, 4464 (1970), the inverse square behavior ofS(τ) was also found in the related model of a weak Josephson junction with quasiparticle dissipation by F. Guinea, G. Schön: Europhys. Lett.1, 585 (1986); J. Low Temp. Phys.69, 219 (1987)

    Google Scholar 

  13. Anderson, P.W., Yuval, G.: J. Phys. C4, 607 (1971), note thatT 1 c =J JR =4 is the transition temperature in the limit of a strong additional nearest neighbor interactionJ NN ≫1 which arises from our kinetic energy term in the limit of a small cutoff τ c ≪π2ħ/2gU

    Google Scholar 

  14. Scalia, V., Falci, G., Fazio, R., Giaquinta, G.: Physica B165, 975 (1990); and Z. Phys. B — Condensed Matter85, 427 (1991); see also R. Brown, E. Simanek: Phys. Rev. B38, 9264 (1988); S. Romano: Nuovo Cimento D10, 1459 (1988)

    Google Scholar 

  15. Kosterlitz, J.M.: Phys. Rev. Lett.37, 1577 (1976)

    Google Scholar 

  16. Odintsov, A.A.: Sov. Phys. JETP67, 1265 (1988)

    Google Scholar 

  17. Thouless, D.J.: Phys. Rev.187, 732 (1969)

    Google Scholar 

  18. Toulouse, G., Kléman, M.: J. Phys. (Paris) Lett.37, L149 (1976)

    Google Scholar 

  19. Korshunov, S.E.: JETP Lett.45, 435 (1987)

    Google Scholar 

  20. This problem has recently been treated by S.V. Panyukov, A.D. Zaikin: Preprint (1991) who consider the effects of dissipation on the Coulomb blockade by discussing the ground state energy as a function of an external charge in the limitg≫1, see also S.V. Panyukov, A.D. Zaikin: J. Low Temp. Phys.73, 1 (1988)

    Google Scholar 

  21. Scharpf, M.: Diplom thesis Universität Göttingen (1991)

  22. The logarithmic interaction of defects in the inverse square Ising model leads to corresponding values α=1/2 and α=1 in the related dissipative two state formulation. For α≧1/2 the real time spin correlation function 〈σ z (t σz(0)〉 has lost its oscillating behavior present for α<1/2 while for α>=1 it becomes nonergodic\(\mathop {\lim }\limits_{t \to \infty } \left\langle {\sigma _z (t) \sigma _z (0)} \right\rangle = const\). Contrary to the present situation, however, the condition of dilute gas of defects is well obeyed there. For a detailed reference see Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Rev. Mod. Phys.59, 1 (1987)

    Google Scholar 

  23. Cleland, A.N., Schmidt, J.M., Clarke, J.: Phys. Rev. Lett.64, 1565 (1990)

    Google Scholar 

  24. Devoret, M.H., Esteve, D., Grabert, H., Ingold, G.L., Pothier, H., Urbina, C.: Phys. Rev. Lett.64, 1824 (1990) Girvin, S.M., Glazman, L.I., Jonson, M., Penn, D.R., Stiles, M.D.: Phys. Rev. Lett.64, 3183 (1990)

    Google Scholar 

  25. It should be pointed out that the agreement between the experiments of Ref. 3, and the single junction theory by Brown, R., Simanek, E.: Phys. Rev. B34, 2957 (1986) must be considered as fortuitous. Indeed the theory is based on an incorrect expression forg(T) which leads tog(T→0)g 0 T/U in the limitg→0 instead of the correct Coulomb gap behavior (9)

    Google Scholar 

  26. Averin, D.V., Odintsov, A.A.: Phys. Lett.140A, 251 (1989) it should be pointed out that their results are derived in perturbation theory, while here we have shown thatg(T→0)T 2 for arbitrary values ofg

    Google Scholar 

  27. Geerligs, L.J., Averin, D.V., Mooij, J.E.: Phys. Rev. Lett.65, 3037 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zwerger, W., Scharpf, M. Crossover from Coulomb-blockade to ohmic conduction in small tunnel junctions. Z. Physik B - Condensed Matter 85, 421–426 (1991). https://doi.org/10.1007/BF01307639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307639

Keywords

Navigation