Skip to main content
Log in

Microscopic model of NaNO2 in the paraelectric phase

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

Starting from a sterical hindrance potential for the motion of the NO2-molecular group in the deformable cage of neighbouring Na-ions, we derive a microscopic model for the NaNO2 crystal in the paraelectric phase. The dynamical variables are the translational displacements of both the NO2-groups and the Na-ions, and the reorientations of the NO2-groups. Reorientations are described by means of symmetry adapted functions. From a numerical study of the model, we conclude that reorientations of the NO2-groups take place essentially through rotations about the crystallographicc-axis. The model explains why optical experiments have led to the incorrect conclusion of reorientations about thea-axis. By studying the symmetry properties of the bilinear coupling of translations and rotations, we separate optical and acoustical displacements. Only the former couple to the order parameter in the long wavelength limit. Therefore there is no acoustical soft mode at the ferroelectric phase transitions. The bilinear coupling leads to an effective lattice mediated interaction among reorienting NO2-groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sawada, S., Nomura, S., Fuji, S., Yoshida, Y.: Phys. Rev. Lett.1, 320 (1958)

    Google Scholar 

  2. Lines, M.E., Glass, A.M.: Principles and applications of ferroelectrics and related materials. Oxford: Clarendon Press 1977

    Google Scholar 

  3. Tanisaki, S.: J. Phys. Soc. Jpn16, 579 (1961)

    Google Scholar 

  4. Yamada, Y., Shibuya, L., Hoshino, S.: J. Phys. Soc. Jpn18, 1594 (1963)

    Google Scholar 

  5. Hoshino, S., Motegi, H.: Jpn J. Appl. Phys.6, 708 (1967)

    Google Scholar 

  6. Janssen, T., Janner, A.: Ferroeleclrics24, 11 (1980)

    Google Scholar 

  7. Kucharczyk, D., Pietraszko, A., Lukaszewicz, K.: Ferroelectrics21, 445 (1978)

    Google Scholar 

  8. Böhm, H.: Z. Kristallogr. Mineral.148, 207 (1978)

    Google Scholar 

  9. Yamada, Y., Yamada, T.: J. Phys. Soc. Jpn21, 2167 (1966)

    Google Scholar 

  10. Dolling, G., Sakurai, J., Cowley, R.A.: J. Phys. Soc. Jpn28, Supplement, 258 (1970)

    Google Scholar 

  11. Sakurai, J., Cowley, R.A., Dolling, G.: J. Phys. Soc. Jpn28, 1426 (1970)

    Google Scholar 

  12. Cochran, W.: Adv. Phys.9, 387 (1960)

    Google Scholar 

  13. Cowley, R.A.: Phys. Rev. Lett.9, 159 (1963)

    Google Scholar 

  14. Vogt, H., Happ, H.: Phys. Status Solidi16, 711 (1966)

    Google Scholar 

  15. Axe, J.D.: Phys. Rev.167, 573 (1968)

    Google Scholar 

  16. Barnoski, M.K., Ballantyne, J.M.: Phys. Rev.174, 946 (1968)

    Google Scholar 

  17. Hatta, I., Sakudo, T., Sawada, S.: J. Phys. Soc. Jpn21, 2162 (1966)

    Google Scholar 

  18. Michel, K.H., Naudts, J.: Phys. Rev. Lett.39, 212 (1977); J. Chem. Phys.67, 547 (1977)

    Google Scholar 

  19. Press, W., Hüller, A.: In: Anharmonic Lattices, Structural Transitions and Melting. Riste, T. (ed.) Leiden: Noordhoff 1974

    Google Scholar 

  20. Pick, R.M.: In: Vibrational Spectroscopy of Molecular Liquids and Solids. Bratos, S., Pick, R.M. (eds.). New York, London: Plenum 1980, p. 305

    Google Scholar 

  21. Michel, K.H.: ibidem, p. 263

    Google Scholar 

  22. Ziegler, G.E.: Phys. Rev.38, 1040 (1931)

    Google Scholar 

  23. Carpenter, G.B.: Acta Crystallogr.5, 132 (1952)

    Google Scholar 

  24. Kay, M.I.: Ferroelectrics4, 235 (1972)

    Google Scholar 

  25. Nomura, S.: J. Phys. Soc. Jpn16, 2440 (1961)

    Google Scholar 

  26. Chisler, E.V., Shur, M.S.: Phys. Status Solidi17, 173 (1966); idem Fiz Tverd. Tela9, 1015 [Sov. Phys. Solid State9, 796 (1967)]

    Google Scholar 

  27. Born, M., Mayer, J.: Z. Phys.75, 1 (1932)

    Google Scholar 

  28. Shibuya, I., Iwata, Y., Koyano, N., Fukui, S., Mitani, S., Tokunaga, M.: J. Phys. Soc. Jpn28, Supplement, 281 (1970)

    Google Scholar 

  29. We follow the potations and conventions of Bradley, C.J., Cracknell, A.P.: The mathematical theory of symmetry in solids. Oxford: Clarendon 1972

    Google Scholar 

  30. The elastic properties and further consequences of the present model will be published in a following paper by the present authors

  31. Ota, K., Ishibashi, Y., Takagi, Y.: J. Phys. Soc. Jpn.29, 1545 (1970)

    Google Scholar 

  32. Hauret, G., Gharbi, A.: C. R. Acad. Sci. (Paris)271B 1072 (1970)

    Google Scholar 

  33. Hatta, I., Shimizu, Y., Hamano, K.: J. Phys. Soc. Jpn.44, 1887 (1978)

    Google Scholar 

  34. Haussühl, S.: Solid State Commun.13, 147 (1973)

    Google Scholar 

  35. Krasser, W., Buchenau, U., Haussühl, S.:idem18, 287 (1976)

    Google Scholar 

  36. Boissier, M., Vacher, R., Fontaine, D., Pick, R.: J. Phys.39, 205 (1978)

    Google Scholar 

  37. Rowe, J.M., Rush, J.J., Vagelators, N., Price, D.L., Hinks, D.G., Susman, S.: J. Chem. Phys.62, 4551 (1975)

    Google Scholar 

  38. Rowe, J.M., Rush, J.J., Chesser, N.J., Michel, K.H., Naudts, J.: Phys. Rev. Lett.40, 455 (1978)

    Google Scholar 

  39. Yamada, Y., Takatera, H., Huber, D.L.: J. Phys. Soc. Jpn.36, 641 (1974)

    Google Scholar 

  40. Michel, K.H., Naudts, J.: J. Chem. Phys.68, 216 (1978)

    Google Scholar 

  41. For a review, see Cochran, W.: CRC Crit. Rev. Solid State Sci.2, 1 (1971)

    Google Scholar 

  42. Strauch, D., Schröder, U., Bauernfeind, W.: Solid State Commun.30, 559 (1979)

    Google Scholar 

  43. Ehrhardt, K.-D., Press, W., Lefebvre, J., Haussühl, S.: Solid State Commun.34, 591 (1980)

    Google Scholar 

  44. See e.g. Maradudin, A.A.: In: Dynamical Properties of Solids, Vol. 1, p. 61, Horton, G.K., Maradudin, A.A. (eds.). Amsterdam: North-Holland 1974

    Google Scholar 

  45. Wagner, H., Horner, H.: Adv. Phys.23, 587 (1974)

    Google Scholar 

  46. Kanamori, J.: J. Appl. Phys.31 (Supplement), 14S (1960)

  47. Elliott, R.J., Harley, R.T., Hayes, W., Smith, S.P.R.: Proc. R. Soc. (Lond.) A328, 217 (1972)

    Google Scholar 

  48. Salamon, M.B.: Phys. Rev. B15, 2936 (1977)

    Google Scholar 

  49. Lam, L., Bunde, A.: Z. Physik B30, 65 (1978)

    Google Scholar 

  50. Harada, M., Koyano, N., Mitani, S., Iwata, Y., Shibuya, I.: Ann. Res. Report Reactor Inst. Kyoto Univ.12, 1 (1979)

    Google Scholar 

  51. Denoyer, F.: private communication

  52. Sato, Y., Gesi, K., Takagi, Y.: J. Phys. Soc. Jpn.16, 2172 (1961)

    Google Scholar 

  53. Sawada, S., Tokygawa, Y.: J. Phys. Soc. Jpn19, 2105 (1964)

    Google Scholar 

  54. Hartwig, C.M., Wiener-Avnear, E., Porto, S.P.S.: Phys. Rev. B5, 79 (1972)

    Google Scholar 

  55. Vogt, H., Happ, H.: Phys. Status Solidi B44, 207 (1971)

    Google Scholar 

  56. Betsuyaku, H.: J. Phys. Soc. Jpn21, 187 (1966)

    Google Scholar 

  57. Iwaizumi, M., Kobuta, S., Isobe, T.: Bull. Chem. Soc. Jpn.44, 3227 (1971)

    Google Scholar 

  58. Sing, S., Singh, K.: J. Phys. Soc. Jpn36, 1588 (1974)

    Google Scholar 

  59. Suzuki, S., Takagi, M.: J. Phys. Soc. Jpn30, 188 (1971); idem J. Phys. Soc. Jpn.32, 1302 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrhardt, K.D., Michel, K.H. Microscopic model of NaNO2 in the paraelectric phase. Z. Physik B - Condensed Matter 41, 329–339 (1981). https://doi.org/10.1007/BF01307322

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307322

Keywords

Navigation