Skip to main content
Log in

Non-tissue factor procoagulants in cancer cells

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. RicklesFR, EdwardsRL: Activation of blood coagulation in cancer: Trousseau's syndrome revisited. Blood 62: 14, 1983.

    Google Scholar 

  2. YodaY, AbeT: Fibrinopeptide A(FPA) level and fibrinogen kinetics in patients with malignant disease. Thromb Hemost 1: 1113, 1978

    Google Scholar 

  3. SunVC, McAfeeWM, HumGJ, WeinerJM: Hemostatic abnormalities in malignancy, a prospective study in one hundred and eight patients. Am J Clin Pathol 71: 10, 1979

    PubMed  Google Scholar 

  4. CarlssonS: Fibrinogen degradation products in serum from patients with cancer. Acta Chir Scand 139: 499, 1973

    PubMed  Google Scholar 

  5. SackGHJr, LevinJ, BellWR: Trousseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: Clinical, pathologic and therapeutic features. Medicine 56: 1, 1977

    PubMed  Google Scholar 

  6. RascheH, DietrichM: Hemostatic abnormalities associated with malignant disease. Eur J Cancer 13: 1053, 1977

    PubMed  Google Scholar 

  7. McClayEF, MastrangeloMJ, BerdD, BelletRE: Effective combination chemo/hormonal therapy for malignant melanoma: experience with three consecutive trials. Int J Cancer 50: 553–556, 1992

    PubMed  Google Scholar 

  8. OwenCAJr, BowieEJW: Chronic intravascular coagulationsyndromes, a summary. Mayo Clin Proc 49: 673, 1974

    PubMed  Google Scholar 

  9. RioB, AndreuG, NicodA, ArragoJP, DutrillauxF, SamamaM, ZittounR: Thrombocytopenia in venocclusive disease after bone marrow transplantation or chemotherapy. Blood 67: 1773–1776, 1986

    PubMed  Google Scholar 

  10. SaitoM, AsakuraH, JokajiH, UotaniC, KumabashiriI, MorishitaE, YamazakiM, MatsudaT: Leukemia and pre-DIC-coagulation and fibrinolytic parameters in severe infection at the nadir of leukocyte after chemotherapy. Rinsho-Byori 86: 158–163, 1990

    Google Scholar 

  11. HumphriesJE, HessCE, StewartFM: Acute promyelocytic leukemia: impact of hemorrhagic complications on response to induction chemotherapy and survival. South Med J 83: 1157–1161, 1990

    PubMed  Google Scholar 

  12. JohnsonRA, RoodmanGD: Hematologic manifestations of malignancy. Dis-Mon 35: 721–768, 1989

    PubMed  Google Scholar 

  13. KoikeH, KonishiT, MafuneK, HirataT, MiyamaT, HiraishiM, IdezukiY: Effect of sequential MTX/5-FU therapy for a case of disseminated intravascular coagulation syndrome associated with recurrence of gastric cancer-a case report. Nippon Geka Gakkai Zasshi 90: 1117–1121, 1989

    PubMed  Google Scholar 

  14. SadamotoY, HarumaK, TokumoK, TeshimaH, MurakamiS, SumiiK, KajiyamaG, YamashitaY, NiimotoM, HattoriT: Advanced gastric cancer with DIC and multiple bone metastasis treated with surgical resection and chemotherapy. Gan To Kagaky Gyoho 14: 1921–1925, 1987

    Google Scholar 

  15. GoldbergMA, GinsburgD, MayerRJ, StoneRM, MaguireM, RosenthalDS, AntinJH: Is heparin administration necessary during induction chemotherapy for patients with acute promyelocytic leukemia? Blood 69: 187–191, 1987

    PubMed  Google Scholar 

  16. HigashinoY, NakamuraT, KatoM, AsanoE, AkimotoR, UchidaH, MukawaA, NagakawaT: Effective postoperative chemotherapy of gastric cancer associated with disseminated carcinomatosis of the bone marrow. Gan No Rinsho 31: 1456–1462, 1985

    PubMed  Google Scholar 

  17. LohriA, HuserB, LammleB, OberholzerM, ThielG, DuckertF: Factor XII, plasma prekallikrein, alpha 2-macroglobulin and C1-inhibitor levels in renal allograft recipients during immunosuppression with cyclosporin A-sequential measurements over four months in 17 patients. Thromb-haemost 58: 993–997, 1987

    PubMed  Google Scholar 

  18. MannKG, JennyRJ, KrishnaswamyS: Cofactor proteins in the assembly and expression of blood clotting enzyme complexes. Ann Rev Biochem 57: 915, 1988

    PubMed  Google Scholar 

  19. StenfloJ, FerlundP, EganW, RoepstorffP. Proc Natl Acad Sci USA 71: 2730–2733, 1974

    PubMed  Google Scholar 

  20. StenfloJ, SuttieJW. Ann Rev Biochem 46: 157–172, 1977

    PubMed  Google Scholar 

  21. NelsestuenGL, ZytkowiczTH, HowardJB. Biol Chem 249: 6347–6350, 1974

    Google Scholar 

  22. EsmonNL, OwenWG, EsmonCT. J Biol Chem 257: 859, 1982

    PubMed  Google Scholar 

  23. SternDM, DrillingsM, KisielW, NawrothP, NosselHL, LaGammaKS: Activation of factor IX bound to cultured bovine aortic endothelial cells. Proc Natl Acad Sci USA 81: 913, 1984

    PubMed  Google Scholar 

  24. SternDM, NawrothP, HandleyD, KisielW: An endothelial cell-dependent pathway of coagulation. Proc Natl Acad Sci USA 82: 2523, 1985

    PubMed  Google Scholar 

  25. DavieEW, RatnoffOD: Waterfall sequence for intrinsic blood clotting. Science 145: 1310, 1964

    PubMed  Google Scholar 

  26. MacFarlaneRG: An enzyme cascade in the blood clotting mechanism and its function as a biochemical amplifier. Nature 202: 498, 1964

    PubMed  Google Scholar 

  27. KisielW, CanfieldW, EricssonL, DavieE: Anticoagulant properties of bovine plasma protein C following activation by thrombin. Biochemistry 16: 5824, 1977

    PubMed  Google Scholar 

  28. FulcherCA, GardinerJE, GriffinJH, ZimmermanTS: Proteolytic inactivation of human factor VIII procoagulant protein by activated human protein C and its analogy with factor V. Blood 63: 486, 1984

    PubMed  Google Scholar 

  29. ChelladuraiM, FossettNG, GangulyP: A novel thrombin-reactive protein complex in human platelets. J Biol Chem 258: 1407, 1983

    PubMed  Google Scholar 

  30. ChelladuraiM, FossettNG, GangulyP: Thrombin-reactive polypeptides of human blood: some biochemical and immunological properties. Eur J Biochem 149: 473, 1985

    PubMed  Google Scholar 

  31. ChelladuraiM, GangulyP: Thrombin-reactive polypeptides of platelets may regulate inhibition of thrombin by antithrombin. Biochem Biophys Acta 870: 204, 1986

    PubMed  Google Scholar 

  32. DonatiMB, FalangaA, ConsonniRet al.: Cancer procoagulant in acute non lymphoid leukemia: relationship of enzyme detection to disease activity. Thromb Haemost 64: 11, 1990

    PubMed  Google Scholar 

  33. DonatiMB, Gambacorti-PasseriniC, CasaliBet al.: Cancer procoagulant in human tumor cells: evidence from melanoma patients. Cancer Res 46: 6471, 1986

    PubMed  Google Scholar 

  34. FalangaA, AlessioMG, DonatiMBet al.: A new procoagulant in acute leukemia. Blood 71: 870, 1988

    PubMed  Google Scholar 

  35. AlessioMG, FalangaA, ConsonniRet al.: Cancer procoagulant in acute lymphoblastic leukemia. Eur J Haematol 45: 78, 1990

    PubMed  Google Scholar 

  36. GordonSG, FranksJJ, LewisBJ: Comparison of procoagulatn activities in extracts of normal and malignant human tissue. J Natl Cancer Inst 62: 773, 1979

    PubMed  Google Scholar 

  37. CuratoloL, ColucciM, CambiniALet al.: Evidence that cells from experimental tumours can activate coagulation factor X. Br J Cancer 40: 228, 1979

    PubMed  Google Scholar 

  38. HilgardP, WhurP: Factor X-activating activity from Lewis lung carcinoma. Br J Cancer 41: 642, 1980

    PubMed  Google Scholar 

  39. GordonSG, BensonB: Analysis of serum cancer procoagulant activity and its possible use as a tumor marker. Thromb Res 56: 431, 1989

    PubMed  Google Scholar 

  40. GordonSG, CrossBA: An enzyme-linked immunosorbent assay for cancer procoagulant and its potential as a new tumor marker. Cancer Res 50: 6229, 1990

    PubMed  Google Scholar 

  41. FalangaA, GordonSG: Comparison of properties of cancer procoagulant and human amnion-chorion procoagulant. Biochim Biophys Acta 831: 161, 1985

    PubMed  Google Scholar 

  42. GordonSG, HasibaU, CrossBAet al.: Cysteine proteinase procoagulant from amnion-chorion. Blood 66: 1261, 1985

    PubMed  Google Scholar 

  43. GordonSG, FranksJJ, LewisB: Cancer procoagulant A: A factor X activating procoagulant from malignant tissue. Thromb Res 6: 127, 1975

    PubMed  Google Scholar 

  44. EsumiN, TodoS, ImashukuS: Platelet aggregating activity mediated by thrombin generation in the NCG human neuroblastoma cell line. Cancer Res 47: 2129, 1987

    PubMed  Google Scholar 

  45. FalangaA, GordonSG: Isolation and characterization of cancer procoagulant: a cysteine proteinase from malignant tissue. Biochemistry 24: 5558, 1985

    PubMed  Google Scholar 

  46. GordonSG, CrossBA: A factor X-activating cysteine protease from malignant tissue. J Clin Invest 67: 1665, 1981

    PubMed  Google Scholar 

  47. FalangaA, ShawE, DonatiMBet al.: Inhibition of cancer procoagulant by peptidyl diazomethyl ketones and peptidyl sulfonium salts. Thromb Res 54: 389, 1989

    PubMed  Google Scholar 

  48. GordonSG, MouradAM: The site of activation of factor X by cancer procoagulant. Blood Coag Fibrinolysis 2: 735, 1991

    Google Scholar 

  49. CuratoloL, AlessioMG, CasaliBet al. Procoagulant activity of mouse transformed cells: different expression in freshly isolated or cultured cells [published erratum appears inIn Vitro Cell Dev Biol 1989 Apr; 25(4): 388].In Vitro Cell Dev Biol 24: 1154, 1988

    PubMed  Google Scholar 

  50. GordonSG, LewisBJ: Comparison of procoagulant activity in tissue culture medium from normal and transformed fibroblasts. Cancer Res 38: 2467, 1978

    PubMed  Google Scholar 

  51. Badenoch-JonesP, RamshawIA: Characterisation of rat tumour cell hybrids: procoagulant and fibrinolytic activities. Aust J Exp Biol Med Sci 63: 91, 1985

    PubMed  Google Scholar 

  52. CajotJF, KruithofEK, SchleuningWDet al.: Plasminogen activators, plasminogen activator inhibitors and procoagulant analyzed in twenty human tumor cell lines. Int J Cancer 38: 719, 1986

    PubMed  Google Scholar 

  53. ChelladuraiM, HonnKV, WalzDA: HLA-DR is a procoagulant. Biochem Biophys Res Commun 178: 467, 1991

    PubMed  Google Scholar 

  54. KappesD, StromingerJL: Human class-II major histocompatibility complex genes and proteins. Ann Rev Biochem 57: 991–1028, 1988

    PubMed  Google Scholar 

  55. GuiraudonC, MuirheadN, WallaceAC. Transplant Proc 21: 3602, 1989

    PubMed  Google Scholar 

  56. HallBM, DugginGG, PhilipsJ, BishopGA, HorvathJS, TillerDJ. Lancet 2: 247–248, 1984

    PubMed  Google Scholar 

  57. BenacerrafB: Role of MHC gene products in immune regulation. Science 212: 1229–1238, 1981

    PubMed  Google Scholar 

  58. Chelladurai M: The thrombotic consequences of malignancy. In: Weiss L, Buchanan M, Orr FW (eds) Microcirculation of cancer metastasis. pp 111–126, 1991

  59. FischerH, DohlstenM, LindvallM, SjogrenH-O, CarlssonR: Binding of staphylococcal enterotoxin A to HLA-DR on B cell lines. J Immunol 142: 3151–3157, 1989

    PubMed  Google Scholar 

  60. DaarAS, FuggleAS, TingA, FabreJW: Anomolous expression of HLA-DR antigens on human colorectal cancer cells. J Immunol 129: 447–449, 1982

    PubMed  Google Scholar 

  61. WinchesterRJ: Expression of Ia-like antigens on cultured human malignant melanoma cthe factor Xa-catalyzed conversion of prothrombin to thrombin. Haemostasis 20: 125, 1990

    PubMed  Google Scholar 

  62. BoggustWA, O'BrienDJ, O'MearaRAQet al.: The coagulative factors of normal human and human cancer tissue. Irish J Med Sci 477: 131, 1963

    Google Scholar 

  63. HanniganF, BoggustWA, O'MearaRA: A human serum component required by the cancer coagulative factor. Eur J Cancer 2: 325, 1966

    PubMed  Google Scholar 

  64. O'MearaRAQ: Coagulative properties of cancers. Irish J Med Sci 394: 474, 1958

    PubMed  Google Scholar 

  65. O'MearaRAQ, ThornesRD: Some properties of the cancer coagulative factor. Irish J Med Sci 423: 106, 1961

    PubMed  Google Scholar 

  66. PineoGF, RegoecziE, HattonMWet al.: The activation of coagulation by extracts of mucus: a possible pathway of intravascular coagulation accompanying adenocarcinomas. J Lab Clin Med 82: 255, 1973

    PubMed  Google Scholar 

  67. CavanaughPG, SloaneBF, BajkowskiASet al.: Involvement of a cathepsin B-like cysteine proteinase in platelet aggregation induced by tumor cells and their shed membrane vesicles. Clin Exp Metastasis 1: 297, 1983

    PubMed  Google Scholar 

  68. CavanaughPG, SloaneBF, BajkowskiASet al.: Purification and characterization of platelet aggregating activity from tumor cells: copurification with procoagulant activity. Thromb Res 37: 309, 1985

    PubMed  Google Scholar 

  69. WeissL: Overview of the metastatic cascade. In: HonnKV, SloanBF (eds) Hemostatic mechanisms and metastasis. p 15. Boston, Martinus Nijhoff, 1984

    Google Scholar 

  70. GasicGJ, GasicTB, StewartGJ: Mechanisms of platelet aggregation by murine tumor cell shedding. In: HonnKV, SloanBF (eds) Hemostatic mechanisms and metastasis. p 127. Boston, Martinus Nijhoff, 1984

    Google Scholar 

  71. KarpatkinS, PearlsteinE: Heterogenous mechanisms of tumor cell-induced platelet aggregation with possible pharmacologic strategy toward prevention of metastases. In: HonnKV, SloanBF (eds) Hemostatic mechanisms and metastasis. pp 1–15. Boston, Martinus Nijhoff, 1984

    Google Scholar 

  72. SloanBF, CavanaughPG, HonnKV: Tumor cysteine proteases, platelet aggregation and metastasis. In: HonnKV, SloanBF (eds) Hemostatic mechanisms and metastasis. p 170. Boston, Martinus Nijhoff, 1984

    Google Scholar 

  73. KiesMS, PoschJJ, GiolmaJP, RubinRN: Hemostatic function in cancer patients. Cancer 46: 831, 1980

    PubMed  Google Scholar 

  74. WoodSJr: Pathogenesis of metastasis formation observedin vivo in the rabbit ear chamber. Arch Pathol 66: 550, 1950

    Google Scholar 

  75. WoodSJr, HolyokeED, YardleyJH: Mechanisms of metastasis production by blood-borne cancer cells. Proc Cancer Res Conf 4: 167, 1961

    Google Scholar 

  76. HarkerLA, SlichterSJ: Platelet and fibrinogen consumption in man. N Engl J Med 287: 999, 1972

    PubMed  Google Scholar 

  77. SlichterSJ, HarkerLA: Hemostasis in malignancy. Ann NY Acad Sci 230: 252, 1974

    PubMed  Google Scholar 

  78. JohannsonS, KuttiJ, OlsonLB: Rapid platelet consumption in a case of metastasic osteogenic sarcoma of the brest. Acta Pathol Microbiol Scand 86: 505, 1978

    Google Scholar 

  79. HagedornAB, BowieEJW, ElvebackLR, OwenCA: Coagulation abnormalities in patients with inoperable lung cancer. Mayo Clin Proc 49: 649, 1974

    Google Scholar 

  80. SaikhBS, BullardV: Thrombopoietic activity in sera of cancer patients. Blood 50 (Suppl 1): 252, 1977

    Google Scholar 

  81. AdanyR, KappelmayerJ, BerenyiEet al.: Factors of the extrinsic pathway of blood coagulation in tumour associated macrophages. Thromb Haemost 62: 850, 1989

    PubMed  Google Scholar 

  82. GuariniA, AceroR, AlessioGet al.: Procoagulant activity of macrophages associated with different murine neoplasms. Int J Cancer 34: 581, 1984

    PubMed  Google Scholar 

  83. SemararoN: Different expression of procoagulant activity in macrophages associated with experimental and human tumors. Haemostasis 18: 47, 1988

    Google Scholar 

  84. SemararoN, MontemurroP, ConeseMet al.: Procoagulant activity of mononuclear phagocytes from different anatomical sites in patients with gynecological malignancies. Int J Cancer 45: 251, 1990

    PubMed  Google Scholar 

  85. SemeraroN, DeLuciaO, LattanzioAet al.: Procoagulant activity of human alveolar macrophages: different expression in patients with lung cancer. Int J Cancer 37: 525, 1986

    PubMed  Google Scholar 

  86. ZacharskiLR, MemoliVA, RousseauSMet al.: Occurrence of blood coagulation factorsin situ in small cell carcinoma of the lung. Cancer 60: 2675, 1987

    PubMed  Google Scholar 

  87. LorenzetR, PeriG, LocatiDet al.: Generation of procoagulant activity by mononuclear phagocytes: a possible mechanism contributing to blood clotting activation within malignant tissue. Blood 62: 271, 1983

    PubMed  Google Scholar 

  88. LutherT, FlosselC, HietschholdVet al.: Flow cytometric analysis of tissue factor (TF) expression on stimulated monocytes-comparison to procoagulant activity of mononuclear blood cells. Blut 61: 375, 1990

    PubMed  Google Scholar 

  89. MorganD, EdwardsRL, RicklesFR: Monocyte procoagulant activity as a peripheral marker of clotting activation in cancer patients. Haemostasis 18: 55, 1988

    Google Scholar 

  90. RanaSV, ReimersHJ, PathikondaMSet al.: Expression of tissue factor and factor VIIa/tissue factor inhibitor activity in endotoxin or phorbol ester stimulated U937 monocyte-like cells. Blood 71: 259, 1988

    PubMed  Google Scholar 

  91. RaoLV, RapaportSI: Activation of factor VII bound to tissue factor: a key early step in the tissue factor pathway of blood coagulation. Proc Natl Acad Sci USA 85: 6687, 1988

    PubMed  Google Scholar 

  92. CortellazzoS, VieroP, BarbuiTet al.: Reduced generation of procoagulant activity by endotoxin-stimulated mononuclear cells from patients with chronic myeloid leukaemia. Br J Haematol 48: 501, 1981

    PubMed  Google Scholar 

  93. ErroiA, CasaliB, DonatiMBet al.: Mouse tumor-associated macrophages do not generate procoagulant activity in response to different stimuli. Int J Cancer 41: 65, 1988

    PubMed  Google Scholar 

  94. PrydzH, PettersenKS: Synthesis of thromboplastin (tissue factor) by endothelial cells. Haemostasis 18: 215, 1988

    PubMed  Google Scholar 

  95. RapaportSI: The extrinsic pathway inhibitor: a regulator of tissue factor-dependent blood coagulation. Thromb Haemost 66: 6, 1991

    PubMed  Google Scholar 

  96. RehemtullaA, RufW, EdgingtonTS: The integrity of the cysteine 186-cysteine 209 bond of the second disulfide loop of tissue factor is required for binding of factor VII. J Biol Chem 266: 10294, 1991

    PubMed  Google Scholar 

  97. Werling RW, Zacharski LR, Kisiel Wet al.: Distribution of tissue factor pathway inhibitor (TFPI, EPI, LACI) in normal and pathologic human tissue. Blood 78: 72a, 1991

  98. BajajMS, KuppuswamyWN, SaitoHet al.: Cultured normal human hepatocytes do not synthesize lipoprotein-associated coagulation inhibitor: evidence that endothelium is the principal site of its synthesis. Proc Natl Acad Sci USA 87: 8869, 1990

    PubMed  Google Scholar 

  99. CarsonSD, HaireWD, BrozeGJ,et al.: Lipoprotein associated coagulation inhibitor, factor VII, antithrombin III, and monocyte tissue factor following surgery. Thromb Haemost 66: 534, 1991

    PubMed  Google Scholar 

  100. LindahlAK, SandsetPM, AbildgaardUet al.: High plasma levels of extrinsic pathway inhibitor and low levels of other coagulation inhibitors in advanced cancer. Acta Chir Scand 155: 389, 1989

    PubMed  Google Scholar 

  101. LindahlAK, AbildgaardU, StokkeG: Release of extrinsic pathway inhibitor after heparin injection: increased response in cancer patients. Thromb Res 59: 651, 1990

    PubMed  Google Scholar 

  102. DenhardtDT, HamiltonRT, ParfettCLet al.: Close relationship of the major excreted protein of transformed murine fibroblasts to thiol-dependent cathepsins. Cancer Res 46: 4590, 1986

    PubMed  Google Scholar 

  103. DiStefanoJF, ZuckerS, LaneBet al.: Analysis of the cell membrane proteolytic enzymes of the B16, F1, F10, and BL6 melanoma and their role in target cell destruction. Cancer Invest 4: 403, 1986

    PubMed  Google Scholar 

  104. RufW, KalnikMW, Lund-HansenTet al.: Characterization of factor VII association with tissue factor in solution. High and low affinity calcium binding sites in factor VII contribute to functionally distinct interactions. J Biol Chem 266: 15719, 1991

    PubMed  Google Scholar 

  105. ZuckerS: A critical appraisal of the role of proteolytic enzymes in cancer invasion: emphasis on tumor surface proteinases. Cancer Invest 6: 219, 1988

    PubMed  Google Scholar 

  106. DvorakHN, SengerDR, DvorakAMet al.: Regulation of extravascular coagulation by microvascular permeability. Science 227: 1059, 1985

    PubMed  Google Scholar 

  107. WojtukiewiczMZ, ZacharskiLR, MemoliVAet al.: Fibrinogen-fibrin transformationin situ in renal cell carcinoma. Anticancer Res 10: 579, 1990

    PubMed  Google Scholar 

  108. RicklesFR, HancockWW, EdwardsRLet al.: Antimetastatic agents. I. Role of cellular procoagulants in the pathogenesis of fibrin deposition in cancer and the use of anticoagulants and/or antiplatelet drugs in cancer treatment. Semin Thromb Hemost 14: 88, 1988

    Google Scholar 

  109. WojtukiewiczMZ, ZacharskiLR, MemoliVAet al.: Indirect activation of blood coagulation in colon cancer. Thromb Haemost 62: 1062, 1989

    PubMed  Google Scholar 

  110. WojtukiewiczMZ, ZacharskiLR, MemoliVAet al.: Absence of components of coagulation and fibrinolysis pathwaysin situ in mesothelioma. Thromb Res 55: 279, 1989

    PubMed  Google Scholar 

  111. WojtukiewiczMZ, ZacharskiLR, MemoliVAet al.: Malignant melanoma. Interaction with coagulation and fibrinolysis pathwaysin situ. Am J Clin Pathol 93: 516, 1990

    PubMed  Google Scholar 

  112. ImaokaS, SasakiY, IwanagaTet al.: The significance of the fibrin/fibrinogen degradation product in serum of carcinoma patients with hematogenous metastasis. Cancer 58: 1488, 1986

    PubMed  Google Scholar 

  113. KwaanHC, KeerHN: Fibrinolysis and cancer. Semin Thromb Hemost 16: 230, 1990

    PubMed  Google Scholar 

  114. RozhinJ, WadeRL, HonnKVet al.: Membrane-associated cathepsin L: a role in metastasis of melanomas [published erratum appears in Biochem Biophys Res Commun 1989 Dec 29; 165(3): 1444]. Biochem Biophys Res Commun 164: 556, 1989

    PubMed  Google Scholar 

  115. GasicGJ, BoettigerD, CatalfamoJL, GasicTD, StewartGJ: Aggregation of platelets and cell membrane vesiculation by rat cells transformedin vitro by Rous sarcoma virus. Cancer Res 38: 2950, 1978

    PubMed  Google Scholar 

  116. DvorakHF, DvorakAM, ManseauEJ, WilbergL, ChurchillWH: Fibrin-gel investment associated with line 1 and line 10 solid tumor growth, angiogenesis, and fibroplasia in guinea pigs: Role of cellular immunity, myofibroblasts, microvascular damage and infarction in line 1 tumor regression. J Natl Cancer Inst 62: 1459, 1979

    PubMed  Google Scholar 

  117. DonatiMB, PoggiA, SemeraroN: Coagulation and malignancy. In: PollerL (ed) Recent advances in blood coagulation, Churchill Livingstone, Edinburgh, p 227, 1982

    Google Scholar 

  118. GorelikE, BercWW, HerbermanRB: Role of NK cell in the antimetastatic effect of anticoagulant drugs. Int J Cancer 33: 87, 1984

    PubMed  Google Scholar 

  119. FidlerIJ: The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer 9: 223, 1973

    PubMed  Google Scholar 

  120. LiottaLA, KleinermanJ, SaidelGM: The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Res 36: 889, 1976

    PubMed  Google Scholar 

  121. VaraniJ, DixitVM, FligielSEG, McKeeverPE, CareyTE: Thrombospondin-induced attachment and spreading of human squamous carcinoma cells. Exp Cell Res 167: 376, 1986

    PubMed  Google Scholar 

  122. MenterDG, SteinertBW, SloaneBF, TaylorJD, HonnKV: A newin vitro model for investigation of tumor cell-platelet endothelial cell interactions and concomitant eicosanoid biosynthesis. Cancer Res 47: 2425, 1987

    PubMed  Google Scholar 

  123. GrossiIM, MenterDG, OhannesianD, KendallA, OnodaJM, SloaneBF, HonnKV. Proc Am Assoc Cancer Res 28: 66, 1987

    Google Scholar 

  124. VlodavskyI, GospodarowiczD: Respective roles of laminin and fibronectin in adhesion of human carcinoma and sarcoma cells. Nature (London) 289: 304, 1981

    Google Scholar 

  125. SchirrmacherV, AltervogtP, FogelM, DennisJ, WalkerCA, BarzD, SchwartzR, Cheingsong-PopovR, SpringerG, RobinsonPJ, NebeT, BrossmerW, VlodavskyI, PaweletN, ZimmermannHP, UhlenbrachG: Importance of cell surface carbohydrates in cancer cell adhesion, invasion and metastasis: Does sialic acid direct metastatic behavior. Invasion Metastasis 2: 313, 1982

    Google Scholar 

  126. MenterDG, HatsfieldJS, HarkinsC, SloaneBF, TaylorJD, CrissmanJD, HonnKV: Tumor cell-platelet interactionsin vitro and their relationship toin vivo arrest of hematogenously circulating tumor cells. Clin Expl Metastasis 5: 65, 1987

    Google Scholar 

  127. GasicGJ, GasicTB, StewartCC: Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 61: 46, 1968

    PubMed  Google Scholar 

  128. HonnKV, CiconeB, SkoffA: Prostacyclin: A potent antimetastatic agent. Science 212: 1270, 1981

    PubMed  Google Scholar 

  129. HonnKV, MenterJ: Thromboxanes and prostacyclin: Positive and negative modulators of tumor growth. Biochem Biophys Res Commun 102: 1122, 1981

    PubMed  Google Scholar 

  130. WoodS, HilgardO: Aspirin and tumor metastases. Lancet 2: 1416, 1972

    Google Scholar 

  131. HilgardP, HellerH, SchmidtCG: The influence of platelet aggregation inhibitors on metastasis formation in mice. Krebs 86: 243, 1976

    Google Scholar 

  132. StraussJF, SaphirO: The possible significance of altered blood coagulability on the spread of carcinoma cells. Proc Inst Med Chic 17: 263, 1949

    Google Scholar 

  133. BrownJM: A study of the mechanism by which anticoagulation with warfarin inhibits blood borne metastases. Cancer Res 33: 1217, 1973

    PubMed  Google Scholar 

  134. HilgardP: Experimental vitamin K deficiency and spontaneous metastases. Br J Cancer 35: 891, 1977

    PubMed  Google Scholar 

  135. HilgardP, MaatB: Mechanism of lung tumor colony reduction caused by coumarin anticoagulation. Eur J Cancer 15: 183, 1979

    PubMed  Google Scholar 

  136. AgostinoD, GrossiCE, CliftonEE: Effect of heparin on circulating Walker 256 carcinosarcoma cells. J Natl Cancer Inst 27: 17, 1961

    PubMed  Google Scholar 

  137. ZacharskiLR, HendersonWG, RicklesFR, FormanWB, CornellCJJr, ForcierRJ, EdwardsRL, HeadleyE, KimSH, O'DonnellJR, O'DellRO, TornyosK, KwaanHC: Effect of warfarin on survival in small cell carcinoma of the lung. JAMA 245: 831, 1981

    PubMed  Google Scholar 

  138. DvorakHF: Thrombosis and cancer. Hum Pathol 18: 275, 1987

    PubMed  Google Scholar 

  139. EdgingtonTS: Activation of the coagulation system in association with neoplasia. J Lab Clin Med 96: 1, 1980

    PubMed  Google Scholar 

  140. EdwardsRL, MorganDL, RicklesFR: Animal tumor procoagulants: registry of the subcommittee on haemostasis and malignancy on the scientific and standardization committee, international society of thrombosis and haemostasis. Thromb Haemost 63: 133, 1990

    PubMed  Google Scholar 

  141. GrimstadIA, PrydzH: Thromboplastin release, but not content, correlates with spontaneous metastasis of cancer cells. Int J Cancer 41: 427, 1988

    PubMed  Google Scholar 

  142. HudigD, BajajSP: Tissue factor-like activity of the human monocytic tumor cell line U937. Thromb Res 27: 321, 1982

    PubMed  Google Scholar 

  143. DvorakHF, QuaySC, OrensteinNSet al.: Tumor shedding and coagulation. Science 212: 923, 1981

    PubMed  Google Scholar 

  144. DoverR, GoetingNL, TaylorIet al.: Factor X-activating activity in patients with colorectal carcinoma. Br J Surg 74: 1122, 1987

    PubMed  Google Scholar 

  145. el-BaruniK, TaylorI, RoathSet al.: Factor X-activating procoagulant in normal and malignant breast tissue. Hematol Oncol 8: 323, 1990

    PubMed  Google Scholar 

  146. KubotaT, AndohK, SadakataHet al.: Tissue factor released from leukemic cells. Thromb Haemost 65: 59, 1991

    PubMed  Google Scholar 

  147. et al. CarsonSD, JohnsonDR: Consecutive enzyme cascades: complement activation at the cell surface triggers increased tissue factor activity. Blood 76: 361, 1990

    PubMed  Google Scholar 

  148. LybergT, PrydzH: Thromboplastin (factor III) activity in human monocytes induced by immune complexes. Eur J Clin Invest 12: 229, 1982

    PubMed  Google Scholar 

  149. SchwartzBS, LevyGA, FairDSet al.: Immune complex-induced human monocyte procoagulant activity cellular kinetics & metabolic requirements. J Immunol 128: 1037, 1982

    PubMed  Google Scholar 

  150. SchwartzBS, MonroeMC, BradshawJD: Endotoxin-induced production of plasminogen activator inhibitor by human monocytes is autonomous and can be inhibited by lipid X. Blood 73: 2188, 1989

    PubMed  Google Scholar 

  151. ScarpatiEM, SadlerJE: Regulation of endothelial cell coagulant properties. Modulation of tissue factor, plasminogen activator inhibitors, and thrombomodulin by phorbol 12-myristate 13-acetate and tumor necrosis factor [published erratum appears in J Biol Chem 1990 Aug 25; 265(24): 14696]. J Biol Chem 264: 20705, 1989

    PubMed  Google Scholar 

  152. TracyPB, RohrbachMS, MannKG: Functional prothrombinase complex assembly on isolated monocytes and lymphocytes. J Biol Chem 258: 7264, 1983

    PubMed  Google Scholar 

  153. VandeWaterL, TracyPB, AronsonDet al.: Tumor cell generation of thrombin via functional prothrombinase complex. Cancer Res 45: 5521, 1985

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gordon, S.G., Chelladurai, M. Non-tissue factor procoagulants in cancer cells. Cancer Metast Rev 11, 267–282 (1992). https://doi.org/10.1007/BF01307182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01307182

Key words

Navigation