Skip to main content
Log in

In vivo19F NMR chemical-shift imaging ofAncistrocladus species

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

19F nuclear magnetic resonance (NMR) imaging and19F NMR chemical-shift imaging (19F CSI) have been used to localize fluorinated compounds administered to stems ofAncistrocladus heyneanus andA. abbreviatus for the elucidation of biosynthetic pathways in living plants. This first application of19F CSI on plants proved CSI to be a valuable technique for mapping fluorinated molecules in plants. Exemplarily using trifluoroacetate as a model compound allowed to select appropriate feeding methods and to optimize both concentration and duration of the application to the plant. The time course of the uptake and distribution of trifluoroacetate was monitored by both19F imaging and19F CSI. Fluorinated metabolites formed by uptake of 3-fluoro-3-deoxy-D-glucose were detected with19F CSI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3-FDG:

3-fluoro-3-deoxy-D-glucose

CSI:

chemicalshift imaging

NMR:

nuclear magnetic resonance

SNR:

signal-to-noise ratio

TFA:

trifluoroacetate

References

  • Berkowitz BA, Moriyama T, Fales HM, Byrd RA, Balaban RS (1990) In vivo metabolism of 3-FDG. J Biol Chem 265: 12417–12423

    Google Scholar 

  • Bringmann G, Pokorny F (1995) The naphthylisoquinoline alkaloids. In: Cordell GA (ed) The alkaloids, vol 46. Academic Press, New York, pp 127–271

    Google Scholar 

  • — Schneider C, Pokorny F, Lorenz H, Fleischmann H, Sankara Narayanan AS, Almeida MR, Govindachari TR, Aké Assi L (1993) The cultivation of tropical lianas of the genusAncistrocladus. Planta Med 59 Suppl: 623–624

    Google Scholar 

  • — Rischer H, Schlauer J, Aké Assi L (1999) In vitro propagation ofAncistrocladus abbreviatus Airy Shaw (Ancistrocladaceae). Plant Cell Tissue Organ Cult 57: 71–73

    Google Scholar 

  • — Wohlfarth M, Rischer H, Grüne M, Schlauer J (2000) A new biosynthetic pathway to alkaloids in plants: acetogenic isoquinolines. Angew Chem Int Ed 39: 1464–1466

    Google Scholar 

  • Brown TR, Kincaid BM, Ugurbil K (1982) Chemical shift imaging in three dimensions. Proc Natl Acad Sci USA 79: 3523–3526

    Google Scholar 

  • Callaghan PT (1991) Principles of nuclear magnetic resonance microscopy. Clarendon Press, Oxford

    Google Scholar 

  • Chudek JA, Hunter G (1997) Magnetic resonance imaging of plants. Progr NMR Spectrosc 31: 43–62

    Google Scholar 

  • Connelly A, Lohman JAB, Loughman BC, Quiquampoix H, Ratcliffe RG (1987) High resolution imaging of plant tissues by NMR. J Exp Bot 38: 1713–1723

    Google Scholar 

  • Frank H, Klein A, Renschen D (1996) Environmental trifluoroacetate. Nature 382: 34

    Google Scholar 

  • Gadian DG (1995) NMR and its applications to living systems. Oxford University Press, Oxford

    Google Scholar 

  • Glidewell SM, Williamson B, Duncan GH, Chudek JA, Hunter G (1999) The development of blackcurrant fruit from flower to maturity: a comparative study by 3 D nuclear magnetic resonance (NMR) micro-imaging and conventional histology. New Phytol 141: 85–98

    Google Scholar 

  • Heidenreich M, Köckenberger W, Kimmich R, Chandrakumar N, Bowtell R (1998) Investigation of carbohydrate metabolism and transport in castor bean seedlings by cyclic J cross polarization imaging and spectroscopy. J Magn Reson 132: 109–124

    Google Scholar 

  • Kent PW, Dwek RA, Taylor NF (1971) Conflgurational dependencies of19F-shifts in fluoromonosaccharides. Tetrahedron 27: 3887–3891

    Google Scholar 

  • Kuchenbrod E, Haase A, Benkert R, Schneider H, Zimmermann U (1995) Quantitative NMR microscopy on intact plants. Magn Reson Imaging 13: 447–455

    Google Scholar 

  • Maudsley AA, Hilal SK, Perman WH, Simon HE (1983) Spatially resolved high resolution spectroscopy by four-dimensional NMR. J Magn Reson 51: 147–152

    Google Scholar 

  • Mc Fall JS, Johnson GA (1994) The architecture of plant vasculature and transport as seen with magnetic resonance microscopy. Can J Bot 72: 1561–1573

    Google Scholar 

  • Meininger M, Jakob PM, von Kienlin M, Koppler D, Bringmann G, Haase A (1997) Radial spectroscopic imaging. J Magn Reson 125: 325–331

    Google Scholar 

  • — Stowasser R, Jakob PM, Schneider H, Koppler D, Bringmann G, Zimmermann U, Haase A (1997) Nuclear magnetic resonance microscopy ofAncistrocladus heyneanus. Protoplasma 198: 210–217

    Google Scholar 

  • Metzler A, Izquierdo M, Ziegler A, Köckenberger W, Komor E, von Kienlin M, Haase A (1995) Plant histochemistry by correlation peak imaging. Proc Natl Acad Sci USA 92: 11912–11915

    Google Scholar 

  • — Köckenberger W, von Kienlin M, Komor E, Haase A (1994) Quantitative measurement of sucrose distribution inRicinus communis seedlings by chemical-shift microscopy. J Magn Reson B 105: 249–252

    Google Scholar 

  • Olt S, Krötz E, Komor E, Rokitta M, Haase A (2000)23Na and1H NMR microimaging of intact plants. J Magn Reson 144: 297–304

    Google Scholar 

  • Phillips L, Wray V (1971) Stereospecific electronegative effects, part I: the19F nuclear magnetic resonance spectra of deoxyfluoro-D-glucopyranoses. J Chem Soc B: 1618–1624

    Google Scholar 

  • Pohmann R, von Kienlin M, Haase A (1997) Theoretical evaluation and comparison of fast chemical shift imaging methods. J Magn Reson 129: 145–160

    Google Scholar 

  • Ratcliffe RG (1994) In vivo NMR studies of higher plants and algae. In: Callow JA (ed) Advances in botanical research, vol 20. Academic Press, London, pp 44–123

    Google Scholar 

  • Rokitta M, Zimmermann U, Haase A (1999) Fast flow measurements in plants using FLASH imaging. J Magn Reson 137: 29–32

    Google Scholar 

  • — Peuke AD, Zimmermann U, Haase A (1999) Dynamic studies of phloem and xylem flow in fully differentiated plants using fast NMR microimaging. Protoplasma 209: 126–131

    Google Scholar 

  • Rollins A, Barber J, Elliott R, Wood B (1989) Xenobiotic monitoring in plants by19F and1H nuclear magnetic imaging and spectroscopy. Plant Physiol 91: 1243–1246

    Google Scholar 

  • Rowland IJ, Maxwell RJ, Collins DJ, Howe FA, Leach MO, Griffiths JR, O'Hagan D (1993) Natural abundance fluorine imaging. Proc Soc Magn Reson Med 2: 894

    Google Scholar 

  • Wolf K, van der Toorn A, Hartmann K, Schreiber L, Schwab W, Haase A, Bringmann G (2000) Double quantum chemical shift imaging for metabolite monitoring in plants. J Exp Bot 353: 1–9

    Google Scholar 

  • Wyrwicz AM, Pszenny MH, Schofleld JC, Tillman PC, Gordon RE, Martin PA (1983) Applications of19F NMR spectroscopy to studies on intact tissues. Science 222: 428–430

    Google Scholar 

  • — Ryback KR, Chew W, Hurd R (1986)19F NMR imaging of a fluorinated anesthetic in a model system. J Magn Reson 69: 572–575

    Google Scholar 

  • Ziegler A, Metzler A, Köckenberger W, Izquierdo M, Komor E, Haase A, Décorps M, von Kienlin M (1996) Correlation-peak imaging. J Magn Reson B 112: 141–150

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Manfred Christi on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bringmann, G., Wolf, K., Meininger, M. et al. In vivo19F NMR chemical-shift imaging ofAncistrocladus species. Protoplasma 218, 134–143 (2001). https://doi.org/10.1007/BF01306603

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01306603

Keywords

Navigation