Abstract
We show that the size of a non-trivial blocking set in the Desarguesian projective planePG(2,p), wherep is prime, is at least 3(p+1)/2. This settles a 25 year old conjecture of J. di Paola.
This is a preview of subscription content, access via your institution.
References
- [1]
A. Blokhuis, andA. E. Brouwer: Blocking sets in desarguesian projective planes,Bull. London Math. Soc. 18 (1986), 132–134.
- [2]
A. Blokhuis, A. E. Brouwer, andT. Szőnyi: The number of directions determined by a functionf on a finite field,manuscript.
- [3]
A. E. Brouwer, andA. Schrijver: The blocking number of an affine space,J. Combin. Theory (A) 24 (1978), 251–253.
- [4]
A. A. Bruen: Blocking sets in finite projective planes,SIAM J. Appl. Math. 21 (1971), 380–392.
- [5]
A. A. Bruen, andR. Silverman: Arcs and blocking sets II,Europ. J. Combin. 8 (1987), 351–356.
- [6]
J. Di Paola: On minimum blocking coalitions in small projective plane games,SIAM J. Appl. Math. 17 (1969), 378–392.
- [7]
R. Jamison: Covering finite fields with cosets of subspaces,J. Combin. Theory (A) 22 (1977), 253–266.
- [8]
L. Lovász, andA. Schrijver: Remarks on a theorem of Rédei,Studia Scient. Math. Hungar. 16 (1981), 449–454.
- [9]
L. Rédei: Lückenhafte Polynome über endlichen Körpern,Birkhäuser Verlag, Basel (1970).
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Blokhuis, A. On the size of a blocking set inPG(2,p). Combinatorica 14, 111–114 (1994). https://doi.org/10.1007/BF01305953
Received:
Revised:
Issue Date:
AMS subject classification code (1991)
- 05 B 25