A theory of alternating paths and blossoms for proving correctness of the\(O(\sqrt V E)\) general graph maximum matching algorithm

This is a preview of subscription content, access via your institution.


  1. [1]

    M. L. Balinski: Labelling to obtain a maximum matching, inCombinatorial Mathematics and its Application, Eds.: R. C. Bose and T. A. Downing, University of North Carolina Press, 1969, 585–602.

  2. [2]

    C. Berge: Two theorems in graph theory,Proc. Natl, Acad. Sci. 43 (1957), 842–844.

    Google Scholar 

  3. [3]

    N. Blum: A new approach to maximum matchings in general graphs, Proceedings of the 17th International Colloquium on Automata,Languages and Programming (1990), 586–597.

  4. [4]

    J. Edmonds: Paths, trees, and flowers,Canad. J. Math. 17 (1965), 449–467.

    Google Scholar 

  5. [5]

    S. Even, andO. Kariv: AnO(n 2.5) algorithm for maximum matching in general graphs,Proc. 16th Annual IEEE Symposium on Foundations of Computer Science (1975), 100–112.

  6. [6]

    H. Gabow: An efficient implementation of Edmonds' algorithm for maximum matching on graphs,JACM 23 (1976), 221–234.

    Google Scholar 

  7. [7]

    H. N. Gabow, andR. E. Tarjan: A linear-time algorithm for a special case of disjoint set union,J. Comput. System Sci. 30 (1985), 209–221.

    Google Scholar 

  8. [8]

    H. N. Gabow, andR. E. Tarjan: Faster scaling algorithms for general graph matching problems, technical report CU-CS-432-89, University of Colorado at Boulder.

  9. [9]

    J. E. Hopcroft, andR. M. Karp: Ann 5/2 algorithm for maximum matching in bipartite graphs,SIAM J. Comput. 2 (1973), 225–231.

    Google Scholar 

  10. [10]

    T. Kameda, andI. Munro: AO(|V||E|) algorithm for maximum matching of graphs,Computing 12 (1974), 91–98.

    Google Scholar 

  11. [11]

    D. E. Knuth:The art of computer Programming, Vol. 1: Fundamental Algorithms, 2nd ed., Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  12. [12]

    E. L. Lawler:Combinatorial Optimization: Network and Matroids, Holt, Rinehart and Winston, New York, 1976.

    Google Scholar 

  13. [13]

    L. Lovász, andM. Plummer:Matching Theory, Academic Press, Budapest, Hungary, (1986).

    Google Scholar 

  14. [14]

    S. Micali, andV. V. Vazirani: An\(O\left( {\sqrt {\left| V \right|} \left| E \right|} \right)\) algorithm for finding maximum matching in general graphs,Proc. 21st Annual IEEE Symposium in Foundation of Computer Science, 1980, 17–27.

  15. [15]

    R. E. Tarjan: Efficiency of a good but not linear set union algorithm,J. Assoc. Comput. Mach. 22 (1975), 215–225.

    Google Scholar 

  16. [16]

    C. Whitzgall, andC. Zahn: Modification of Edmonds' maximum matching algorithm,J. Res. Nat. Bur. Standards Sect. B69 (1965), 91–98.

    Google Scholar 

Download references

Author information



Additional information

Partially supported by an NSF PYI Grant with matching funds from AT&T Bell Labs at Cornell University

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vazirani, V.V. A theory of alternating paths and blossoms for proving correctness of the\(O(\sqrt V E)\) general graph maximum matching algorithm. Combinatorica 14, 71–109 (1994). https://doi.org/10.1007/BF01305952

Download citation

AMS subject classification codes (1991)

  • 05 C 70
  • 05 C 85