Skip to main content
Log in

Numerical study of disk driven rotating MHD flow of a liquid metal in a cylindrical enclosure

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

A numerical study of the steady laminar MHD flow driven by a rotating disk at the top of a cylinder filled with a liquid metal is presented. The governing equations in cylindrical coordinates are solved by a finite volume method. The effect of an axial magnetic field on the flow is investigated for an aspect ratioH/R equal to 1. The magnetic Reynolds number is assumed to be small whereas the interaction parameter,N, is large compared to unity. This allows to derive asymptotic results for the flow solution which are found in good agreement with the numerical calculations. The effect of the top, botton and vertical walls conductivity on the flow is studied. Various combinations of these conductivities are considered. The results obtained showed that one can control the primary flow through a good choice of the electrical conductivity of both the disk and cylinder walls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

Magnetic field

H :

Height of the cylinder

Ha:

Hartmann number

jz :

Axial electric current

N :

Interaction parameter

P :

Dimensionless pressure

R :

Radius of the cylinder

Re:

Reynolds number

R m :

Magnetic Reynolds number

r :

Dimensionless radius

V r :

Dimensionless radial velocity

V z :

Dimensionless axial velocity

V ϑ :

Dimensionless azimuthal velocity

Z :

Dimensionless height

ϱ:

Density of the fluid

v :

Kinematic viscosity

μ:

Dynamic viscosity

σ:

Electrical conductivity

Ω:

Angular velocity

φ:

Dimensionless electric potential

δ:

Thickness of the Ekman layer

Δ:

Laplacian operator

Δr :

Increment of the grid in the radial direction

ΔZ :

Increment of the grid in the axial direction

References

  1. Granger, R. A.: Introduction to vortex dynamics. V. Kármán Institute Lecture Series 1986–08, Volume 1 (1986).

  2. Tsitverblit, N., Kit E.: Numerical study of axisymmetric vortex breakdown in an annulus. Acta Mech.118, 79–95 (1996).

    Google Scholar 

  3. Schultz-Grunow, F.: Der Reibungswiderstand rotierender Scheiben in Gehäusen. ZAMM15, 191–204 (1935).

    Google Scholar 

  4. Daily, J. W., Nece, R. E.: Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks. J. Basic Eng82, 217–231 (1960).

    Google Scholar 

  5. Grohne, D.: Über die laminare Strömung in einer kreiszylindrischen Dose mit rotierendem Deckel. Nachr. Akad. Wiss. Göttingen Math.-Phys. Klasse12, 263–282 (1955).

    Google Scholar 

  6. Thomlan, P. F., Hudson, J. L.: Flow near an enclosed rotating disk: analysis. Chem. Eng. Sci.26, 1591–1600 (1971).

    Google Scholar 

  7. Bertela, M., Gori, F.: Laminar flow in a cylindrical container with a rotating cover. J. Fluids Eng.104, 31–39 (1982).

    Google Scholar 

  8. Lang, E., Sridhar, K., Wilson, N. W.: Computational study of disk driven rotating flow in a cylindrical enclosure. J. Fluids Eng.116, 815–820 (1994).

    Google Scholar 

  9. Alonso, C. V.: Steady laminar flow in a stationary tank with a spinning, bottom. J. Appl. Mech.42, 771–776 (1975).

    Google Scholar 

  10. Escudier, M. P.: Observations of the flow produced in a cylindrical container by a rotating endwall. Exp. Fluids2, 189–196 (1984).

    Google Scholar 

  11. Ronnenberg, B.: Ein selbstjustierendes 3-Komponenten-Laser Doppler-Anemometer nach dem Vergleichsstrahlverfahren, angewandt für Untersuchungen in einer stationärem zylindersymmetrischen Drehströmung mit einer Rückströmblase. Max-Planck-Institut für Strömungsforschung, Bericht 20/1977.

  12. Hjellming, L., Walker, J.: Melt motion in a Czochalski crystal puller with an axial magnetic field: isothermal motion. J. Fluid Mech.164, 237–273 (1986).

    Google Scholar 

  13. Barbier, F., Alemany A.: On the influence of a high magnetic field on the corrosion and deposition processes in the liquid Pb-17Li alloy. Fusion Eng. Des. Rev.62, 120–135 (1998).

    Google Scholar 

  14. Patankar, S. V.: Numerical heat, transfer and fluid flow. New-York: McGraw-Hill 1980.

    Google Scholar 

  15. Michelsen, J. A.: Modeling of laminar incompressible rotating fluid flow, AFM 86-05, Ph. D. Dissertation, Dept. of Fluid Mechanics, Tech. Univ. of Denmark, 1986.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bessaih, R., Marty, P. & Kadja, M. Numerical study of disk driven rotating MHD flow of a liquid metal in a cylindrical enclosure. Acta Mechanica 135, 153–167 (1999). https://doi.org/10.1007/BF01305749

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01305749

Keywords

Navigation