Skip to main content
Log in

The effect of the slip boundary condition on the flow of fluids in a channel

  • Original Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

The assumption that a liquid adheres to a solid boundary (“no-slip” boundary condition) is one of the central tenets of the Navier-Stokes theory. However, there are situations wherein this assumption does not hold. In this paper we investigate the consequences of slip at the wall on the flow of a linearly viscous fluid in a channel. Usually, the slip is assumed to depend on the shear stress at the wall. However, a number of experiments suggests that the slip velocity also depends on the normal stress. Thus, we investigate the flow of a linearly viscous fluid when the slip depends on both the shear stress and the normal stress. In regions where the slip velocity depends strongly on the normal stress, the flow field in a channel is not fully developed and rectilinear flow is not possible. Also, it is shown that, in general, traditional methods such as the Mooney method cannot be used for calculating the slip velocity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Navier, C. L. M. H.: Sur les lois du mouvement des fluides. Mem. Acad. R. Sci. Inst. Fr.6, 389–440 (1827).

    Google Scholar 

  2. Helmholtz, H., Pitrowski, G. v.: Über Reibung tropfbarer Flüssigkeiten. Wissenschaftliche AbhandlungenI, 172–222, Leipzig 1882.

    Google Scholar 

  3. Maxwell, J. C.: On stresses in rarified gases arising from inequalities in temperature. In: The scientific papers of James Clerk Maxwell (Niven, W. D., ed.) VolumeII, pp. 681–712. Cambridge: Cambridge University Press 1890.

    Google Scholar 

  4. Kundt, A., Warburg, E.: Über Reibung und Wärmeleitung verdünnter Gase. Ann. Phys. Chem.155, 337–365 (1875).

    Google Scholar 

  5. Kundt, A., Warburg, E.: Über specifische Wärme des Quecksilbergases. Ann. Phys. Chem.157, 353–364 (1876).

    Google Scholar 

  6. Kennard, E. H.: Kinetic theory of gases. New York: McGraw Hill 1938.

    Google Scholar 

  7. Stokes, C. G.: Mathematical and physical papers, vol. 1. Cambridge: Cambridge University Press 1880.

    Google Scholar 

  8. Day, M. A.: The no-slip boundary condition in fluid mechanics. Erkenntnis33, 285–296 (1990).

    Google Scholar 

  9. Denn, M. M.: Issues in viscoelastic fluid mechanics. Ann. Rev. Fluid Mech.22, 13–34 (1990).

    Google Scholar 

  10. Vinogradov, G. V., Malkin, A. Ya., Yanovskii, Yu. G., Borisenkova, E. K., Yarlykov, B. V., Brezhnaya, G. V.: Viscoelastic properties and flow of narrow distribution polybutadienes and polyisopropenes. J. Polymer Sci. Part A-2,10, 1061–1084 (1972).

    Google Scholar 

  11. Petrie, C. J. S., Denn, M. M.: Instabilites in polymer processing. AIChE J.22, 209–236 (1976).

    Google Scholar 

  12. Kolkka, R. W., Malkus, D. S., Hansen, M. G., Ierly, G. R., Worthing, R. A.: Spurt phenomena for the Johnson-Segalman fluid and related models. J. Non-Newtonian Fluid Mech.29, 303–335 (1988).

    Google Scholar 

  13. McLeish, T. C. B., Ball, R. C.: A molecular approach to the spurt effect in polymer melt flow. J. Polymer Sci., Part B,24, 1735–1745 (1986).

    Google Scholar 

  14. Malkus, D. S., Nohel, J. A., Plohr B. J.: Dynamics of shear flow of a non-Newtonian fluid. J. Comp. Phys.87, 464–487 (1990).

    Google Scholar 

  15. Malkus, D. S., Nohel, J. A., Plohr, B. J.: Analysis of a new phenomenon in shear flow of non-Newtonian fluids. SIAM J. Appl. Math.51, 899–929 (1991).

    Google Scholar 

  16. Rao, I. J., Rajagopal, K. R.: Some simple flows of a Johnson-Segalman fluid. Acta Mech.132, 209–219 (1999).

    Google Scholar 

  17. Rao, I. J.: Flow of a Johnson-Segalman fluid between rotating co-axial cylinders with and without suction. Int. Non-Linear Mech.34, 63–70 (1999).

    Google Scholar 

  18. Hatzikiriakos, S. G., Dealy, J. M.: Role of slip and fracture in the oscillatory flow of HDPE in a capillary. J. Rheol.36, 845–884 (1992).

    Google Scholar 

  19. Mooney, M.: Explicit formulae for slip and fluidity. J. Rheol.2, 210–222 (1931).

    Google Scholar 

  20. Hatzikiriakos, S. G., Dealy, J. M.: Wall slip of molten high density polyethylene I. Sliding plate rheometer studies. J. Rheol.35, 497–523 (1991).

    Google Scholar 

  21. Hatzikiriakos, S. G., Dealy, J. M.: Wall slip of molten high density polyethylene's II. Capillary rheometer studies. J. Rheol.36, 703–741 (1992).

    Google Scholar 

  22. Ramamurthy, A. V.: Wall slip in viscous fluids and influence of material construction. J. Rheol.30, 337–357 (1986).

    Google Scholar 

  23. Kraynik, A. M., Schowalter, W. R.: Slip at the wall and extrudate roughness with aqueous solutions of polyvinyl alcohol and sodium borate. J. Rheol.25, 95–114 (1981).

    Google Scholar 

  24. Lim, F. J., Schowalter, W. R.: Wall slip of narrow molecular weight distribution polybutadienes. J. Rheol.33, 1359–1382 (1989).

    Google Scholar 

  25. Atwood, B. T., Schowalter, W. R.: Measurement of slip at the wall during the flow of high density polyethylene through a rectangular conduit. Rheol. Acta28, 134–146 (1989).

    Google Scholar 

  26. Migler, K. B., Hervet, H., Leger, L.: Slip transition of a polymer melt under shear stress. Phys. Rev. Lett.70, 287–290 (1993).

    Google Scholar 

  27. Migler, K. B., Massey, G., Hervet, H., Leger, L.: The slip transition at the polymer-solid interface. J. Phys. Condens. Matter6, A301–304 (1994).

    Google Scholar 

  28. Vinogradov, G. V., Ivanova, L. I.: Wall slippage and elastic turbulence of polymers in the rubbery state. Rheol. Acta7, 243–254 (1968).

    Google Scholar 

  29. White, J. L., Han, M. H., Nakajima, N., Brzoskowski, R.: The influence of materials of construction on biconical rotor and considerations of slippage. J. Rheol.35, 167–189 (1991).

    Google Scholar 

  30. Person, T. J., Denn, M. M.: The effect of die materials and pressure-dependent slip on the extrusion of linear low-density polyethylene. J. Rheol.41, 249–265 (1997).

    Google Scholar 

  31. Georgiou, C. G., Crochet, M. J.: Compressible viscous flow in slits with slip at the wall. J. Rheol.38, 639–654 (1994).

    Google Scholar 

  32. Sillman, W. J., Scriven, L. E.: Separating flow near a static contact line: slip at a wall and shape of a free surface. J. Comp. Phys.34, 287–313 (1980).

    Google Scholar 

  33. Torres, A., Hrymak, A. N., Vlachopoulos, J., Dooley, J., Hilton, B. T.: Boundary conditions for contact lines in coextrusion flows. Rheol. Acta35, 513–525 (1993).

    Google Scholar 

  34. Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comput.22, 745–762 (1968).

    Google Scholar 

  35. Fletcher, C. A. J.: Computational techniques for fluid dynamics, vol. II. Berlin Heidelberg New York Tokyo: Springer 1991.

    Google Scholar 

  36. Van Leer, B.: Flux-vector splitting for the Euler equations. Lecture Notes in Physics, vol. 70, 507–512 (1982).

    Google Scholar 

  37. Chauffoureaux, J. C., Dehennau, C., Van Rijckevorsel, J.: Flow and thermal instability of rigid PVC. J. Rheol.23, 1–24 (1979).

    Google Scholar 

  38. Lau, H. C., Schowalter, W. C.: A model for adhesive failure of viscoelastic fluids during flow. J. Rheol.30, 193–206 (1986).

    Google Scholar 

  39. Cohen, Y., Metzner, A. B.: Apparent slip flow of polymer solutions. J. Rheol.29, 67–102 (1985).

    Google Scholar 

  40. Serrin, J.: Mathematical principles of classical fluid mechanics. In: Encyclopedia of Physics, vol. III/1 (Flügge, S., Truesdell, C., eds.). Berlin: Springer 1959.

    Google Scholar 

  41. Consiglieri, L.: Stationary solutions for a Bingham flow with nonlocal friction. In: Mathematical topics in fluid mechanics (Rodrigues, J., Sequeira A., eds.). Pitman Research Notes in Mathematics,274. Essex: Longman Scientific and Technical 1992.

    Google Scholar 

  42. Fujita, H.: A mathematical analysis of motions of viscous incompressible fluids under leak or slip boundary conditions. Surikaisekikenenkyusho Kokyuroko734, 123–142 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, I.J., Rajagopal, K.R. The effect of the slip boundary condition on the flow of fluids in a channel. Acta Mechanica 135, 113–126 (1999). https://doi.org/10.1007/BF01305747

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01305747

Keywords

Navigation