Reversible relative difference sets


We investigate nontrivial (m, n, k, λ)-relative difference sets fixed by the inverse. Examples and necessary conditions on the existence of relative difference sets of this type are studied.

This is a preview of subscription content, access via your institution.


  1. [1]

    K. T. Arasu, D. Jungnickel andA. Pott: Divisible Difference Sets with Multiplier-1,J. Algebra 133 (1990), 35–62.

    Google Scholar 

  2. [2]

    T. Beth, D. Jungnickel andH. Lenz:Design Theory, Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  3. [3]

    A. T. Butson: Generalized Hadamard Matrices,Proc. Amer. Math. Soc. 13 (1962), 894–898.

    Google Scholar 

  4. [4]

    A. T. Butson: Relations Among Generalized Hadamard Matrices, Relative Difference Sets, and Maximal Length Linear Recurring Sequences,Can. J. Math. 15 (1963), 42–48.

    Google Scholar 

  5. [5]

    J. F. Dillon: Difference Sets in 2-groups,Proc. NSA Math. Sc. Meeting (1987), 165–172.

  6. [6]

    J. E. H. Elliott andA. T. Butson: Relative Difference Sets,Illinois J. Math. 10 (1966), 517–531.

    Google Scholar 

  7. [7]

    M. Hall, Jr.:The Theory of Groups, Chelsea Publishing Company, New York, 1976.

    Google Scholar 

  8. [8]

    E. S. Lander:Symmetric Designs: An Algebraic Approach, Cambridge University Press, Cambridge 1983.

    Google Scholar 

  9. [9]

    K. H. Leung andS. L. Ma: Construction of Partial Difference Sets and Relative Difference Sets onp-groups,Bull. London Math. Soc. 22 (1990), 533–539.

    Google Scholar 

  10. [10]

    S. L. Ma: On Association Schemes, Schur Rings, Strongly Regular Graphs and Partial Difference Sets,Ars Combinatoria 27 (1989), 211–220.

    Google Scholar 

  11. [11]

    R. L. McFarland: Sub-Difference Sets of Hadamard Difference Sets,J. Combin. Th. Ser. A. 54 (1990), 112–122.

    Google Scholar 

  12. [12]

    P. K. Menon: On Difference Sets whose Parameters Satisfy a Certain Relation,Proc. Amer. Math. Soc. 13 (1962), 739–745.

    Google Scholar 

  13. [13]

    J-P. Serre:Linear Representations of Finite Groups, Springer, New York, 1978.

    Google Scholar 

  14. [14]

    R. J. Turyn: A Special Class of Williamson Matrices and Difference Sets,J. Combin. Th. Ser. A 36 (1984), 111–115.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ma, S.L. Reversible relative difference sets. Combinatorica 12, 425–432 (1992).

Download citation

AMS subject classification code (1991)

  • 05 B 10