A solution of Hadwiger's covering problem for zonoids


For a convex body M ⊂ ℝn byb(M) the least integerp is denoted, such that there are bodiesM 1, ...,M p each of which is homothetic toM with a positive ratiok<1 andM 1∪...∪M p M. H. Martini has proved [7] thatb(M)<-3·2n−2 for every zonotope M ⊂ ℝn, which is not a parallelotope.

In the paper this Martini's result is extended to zonoids. In the proof some notions and facts of real functions theory are used (points of density, approximative continuity).

This is a preview of subscription content, access via your institution.


  1. [1]

    H. Hadwiger: Ungeloste Probleme.Elem. der Math., (1957),12, No. 20, 121.

    Google Scholar 

  2. [2]

    M. Lassak: Solution of Hadwiger's covering problem for centrally symmetric convex bodies in ℝ3,J. London Math. Soc. (2) (1984),30, 501–511.

    Google Scholar 

  3. [3]

    A. D. Aleksandrov: Odna teorema o vypuklyh mnogogrannikah,Trudy Mat. Inst. Steklov 87 (1933).

  4. [4]

    E. D. Bolker: A class of convex bodies,Trans. Amer. Math. Soc., (1969)145, 323–345.

    Google Scholar 

  5. [5]

    V. A. Zalgaller. Ju. G. Reshetnyak: O spryamlyaemykh krivykh, additivnykh vektor-funkciyakh i smeshenii otrezkov,Vestnik Leningrad. Univ. (1954), 45–67.

  6. [6]

    A. A. Ljapunov: O vpolue additivnykh vektor-funkciyakh,Izvestiya AN SSSR, ser. mat. 4 (1940), 456–478.

    Google Scholar 

  7. [7]

    H. Martini: Some results and problems around Zonotopes.Colloq. Math. Soc. Bolyai, (1985),48, Intuitive geometry, Siófok, 383–418.

    Google Scholar 

  8. [8]

    S Saks:Theory of the integral (1937) Haufner, New York.

    Google Scholar 

  9. [9]

    V. G. Boltjanskij: Zadacha ob osveshchenii granicy vypuklogo tela,Izvestija Moldav. AN SSSR 10 (1960), 7–84.

    Google Scholar 

  10. [10]

    P. S. Soltan: Ob otnosheniyakh mezhdu zadachami pokrytiya i osceshcheniya vypuklykh tel,Izvestiya AN SSSR, ser. mat. (1966), 91–93.

  11. [11]

    V. G. Boltjanskij, andP. S. Soltan:Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, 1978. Kishinev, Stiinca.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Boltjanski, V.G., Soltan, P.S. A solution of Hadwiger's covering problem for zonoids. Combinatorica 12, 381–388 (1992). https://doi.org/10.1007/BF01305231

Download citation

AMS Subject Classification code (1991)

  • 52 A 20