Abstract
For a convex body M ⊂ ℝn byb(M) the least integerp is denoted, such that there are bodiesM 1, ...,M p each of which is homothetic toM with a positive ratiok<1 andM 1∪...∪M p ⊃M. H. Martini has proved [7] thatb(M)<-3·2n−2 for every zonotope M ⊂ ℝn, which is not a parallelotope.
In the paper this Martini's result is extended to zonoids. In the proof some notions and facts of real functions theory are used (points of density, approximative continuity).
This is a preview of subscription content, access via your institution.
References
- [1]
H. Hadwiger: Ungeloste Probleme.Elem. der Math., (1957),12, No. 20, 121.
- [2]
M. Lassak: Solution of Hadwiger's covering problem for centrally symmetric convex bodies in ℝ3,J. London Math. Soc. (2) (1984),30, 501–511.
- [3]
A. D. Aleksandrov: Odna teorema o vypuklyh mnogogrannikah,Trudy Mat. Inst. Steklov 87 (1933).
- [4]
E. D. Bolker: A class of convex bodies,Trans. Amer. Math. Soc., (1969)145, 323–345.
- [5]
V. A. Zalgaller. Ju. G. Reshetnyak: O spryamlyaemykh krivykh, additivnykh vektor-funkciyakh i smeshenii otrezkov,Vestnik Leningrad. Univ. (1954), 45–67.
- [6]
A. A. Ljapunov: O vpolue additivnykh vektor-funkciyakh,Izvestiya AN SSSR, ser. mat. 4 (1940), 456–478.
- [7]
H. Martini: Some results and problems around Zonotopes.Colloq. Math. Soc. Bolyai, (1985),48, Intuitive geometry, Siófok, 383–418.
- [8]
S Saks:Theory of the integral (1937) Haufner, New York.
- [9]
V. G. Boltjanskij: Zadacha ob osveshchenii granicy vypuklogo tela,Izvestija Moldav. AN SSSR 10 (1960), 7–84.
- [10]
P. S. Soltan: Ob otnosheniyakh mezhdu zadachami pokrytiya i osceshcheniya vypuklykh tel,Izvestiya AN SSSR, ser. mat. (1966), 91–93.
- [11]
V. G. Boltjanskij, andP. S. Soltan:Kombinatornaya geometriya razlichnykh klassov vypuklykh mnozhestv, 1978. Kishinev, Stiinca.
Author information
Affiliations
Rights and permissions
About this article
Cite this article
Boltjanski, V.G., Soltan, P.S. A solution of Hadwiger's covering problem for zonoids. Combinatorica 12, 381–388 (1992). https://doi.org/10.1007/BF01305231
Received:
Revised:
Issue Date:
AMS Subject Classification code (1991)
- 52 A 20