Zeitschrift für Physik A Atomic Nuclei

, Volume 335, Issue 3, pp 331–340 | Cite as

Time-dependent density-matrix theory

II. Mass dispersion in damped nuclear reactions
  • M. Gong
  • M. Tohyama
  • J. Randrup
Heavy Ion Physics, Fission


The mass fluctuations in damped reactions of16O+16O are studied in an extended time-dependent Hartree-Fock theory. The theory determines the time evolution of a two-body density matrix as well as that of a one-body density matrix, providing us with a microscopic way to calculate the fluctuations of one-body quantities. The results of the theory are compared with those obtained in a transport model. It is found that the dispersions in fragment mass calculated in the two models are of the same order of magnitude and much larger than those calculated in the time-dependent Hartree-Fock theory. The differences between the microscopic theory and the transport model are also discussed.


24.10.Cn 25.70.Cd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    See for example: Schröder, W.U., Huizenga, J.R.: Treaties on heavy ion science, Vol. 2. New York: Plenum 1984Google Scholar
  2. 2.
    Negele, J.W.: Rev. Mod. Phys.54, 913 (1982)Google Scholar
  3. 3.
    Davies, K.T.R., Devi, K.R.S., Koonin, S.E., Strayer, M.R.: Treaties on heavy ion science, Vol. 3. New York: Plenum 1985Google Scholar
  4. 4.
    Dasso, C.H., DØssing, T., Pauli, H.C.: Z. Phys. A — Atoms and Nuclei289, 395 (1979)Google Scholar
  5. 5.
    Tohyama, M., Yamaji, S.: Phys. Lett.123B, 16 (1983); Yamaji, S., Tohyama, M.: Phys. Lett.147B, 339 (1984)Google Scholar
  6. 6.
    Bonche, P., Flocard, H.: Nucl. Phys. A437, 189 (1985)Google Scholar
  7. 7.
    Marston, J.B., Koonin, S.E.: Phys. Rev. Lett.54, 1139 (1985)Google Scholar
  8. 8.
    Balian, R., Vénéroni, M.: Phys. Rev. Lett.47, 1353 (1981)Google Scholar
  9. 9.
    Gong, M., Tohyama, M.: Z. Phys. A —Atomic Nuclei335, 153 (1990)Google Scholar
  10. 10.
    Wang, S.J., Cassing, W.: Ann. Phys.159, 328 (1985)Google Scholar
  11. 11.
    Randrup, J.: Nucl. Phys. A307 319 (1978)Google Scholar
  12. 12.
    Randrup, J.: Nucl. Phys. A327 490 (1979)Google Scholar
  13. 13.
    Randrup, J.: Nucl. Phys. A383 468 (1982)Google Scholar
  14. 14.
    Tohyama, M., Gong, M.: Z. Phys. A — Atomic Nuclei332, 269 (1989)Google Scholar
  15. 15.
    Myers, W.D., Swiatecki, W.J.: Ark. Fys.36, 343 (1967)Google Scholar
  16. 16.
    Davies, K.T.R., Koonin, S.E.: Phys. Rev. C23, 2042 (1981)Google Scholar
  17. 17.
    Davies, K.T.R., Feldmeier, H.T., Flocard, H., Weiss, M.S.: Phys. Rev. C18, 2631 (1978)Google Scholar
  18. 18.
    JØrgensen, F.H., DØssing, T., Nilsson, B.S., Randrup, J.: Phys. Lett.191B, 323 (1987)Google Scholar
  19. 19.
    Tohyama, M.: Phys. Rev. C36, 187 (1987)Google Scholar
  20. 20.
    Cassing, W., Wang, S.J.: Z. Phys. A —Atomic Nuclei328, 423 (1987)Google Scholar
  21. 21.
    Feldmeier, H., Buck, P.: In: Lecture notes in physics, Vol. 171, p. 384. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  22. 22.
    Schröder, W.U., Huizenga, J.R.: Ann. Rev. Nucl. Sci.27, 465 (1977)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • M. Gong
    • 1
  • M. Tohyama
    • 1
  • J. Randrup
    • 2
  1. 1.NSCL and Physics DepartmentMichigan State UniversityEast LansingUSA
  2. 2.Nuclear Science Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations