Skip to main content
Log in

Electrostatic and electromagnetic surface shape resonances

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The homogeneous integral equations that give the electromagnetic field in the vicinity of a protuberance or a depression on the otherwise planar interface with vacuum of a semi-infinite dielectric medium or a thin dielectric film on a semi-infinite substrate have been obtained. The Rayleigh hypothesis, the vectorial equivalent of the Kirchhoff integral, and the extinction theorem have been used for this purpose. The assumption that the perturbation of the vacuum dielectric interface has cylindrical symmetry about the normal to the nominal surface allows a significant simplification of these integral equations to be carried out. We have used Gaussian quadrature schemes to convert the resulting integral equations into matrix equations, and have obtained the frequencies of the shape resonances by equating to zero the determinants of the matrices obtained. Calculations have been carried out for Gaussian (x 3=Aexp(−x 2 /R 2)) and exponential (x 3=Aexp(−x /R)) surface profiles, and convergent results obtained for values ofA/R of the order of unity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeanmaire, D.L., van Duyne, R.P.: J. Electroanal. Chem.84, 1 (1977); see, also, Burstein, E., Lundqvist, S.L., Mills, D.L.: In Surface enhanced raman scattering. Chang, R.K., Furtak, T.E. (eds.), p. 67. New York: Plenum Press 1982

    Google Scholar 

  2. Chen, C.K., de Castro, A.R.B., Shen, Y.R.: Phys. Rev. Lett.46, 145 (1981)

    Google Scholar 

  3. Reinisch, R., Neviere, M.: Phys. Rev. B28, 1870 (1983)

    Google Scholar 

  4. Farias, G.A., Maradudin, A.A.: Phys. Rev. B30, 3002 (1984)

    Google Scholar 

  5. Rendell, R.W., Scalapino, D.J., Mühlschlegel, B.: Phys. Rev. Lett.41, 1746 (1978)

    Google Scholar 

  6. Rendell, R.W., Scalapino, D.J.: Phys. Rev. B24, 3276 (1981)

    Google Scholar 

  7. Berreman, D.W.: Phys. Rev.163, 855 (1967)

    Google Scholar 

  8. Ruppin, R.: Solid State Commun.39, 903 (1981)

    Google Scholar 

  9. Das, P.C., Gersten, J.I.: Phys. Rev. B25, 6281 (1982)

    Google Scholar 

  10. Mal'shukov, A.G., Shekhmamet'ev, Sh.A.: Fiz. Tverd. Tela25, 2623 (1983) [Sov. Phys.-Solid State25, 1509 (1983)]

    Google Scholar 

  11. Lord Rayleigh: Philos. Mag.14, 70 (1907); Theory of sound. 2nd Edn., Vol. II, p. 89. New York: Dover 1945

    Google Scholar 

  12. Jackson, J.D.: Classical electrodynamics. pp. 14–15. New York: Wiley 1962

    Google Scholar 

  13. Ref. 8 pp. 283–285.

    Google Scholar 

  14. Wolf, E.: In: Coherence and quantum optics. Mandel, L., Wolf, E. (eds.), p. 339. New York: Plenum Press 1973

    Google Scholar 

  15. Laks, B., Mills, D.L., Maradudin, A.A.: Phys. Rev. B23, 4965 (1981)

    Google Scholar 

  16. Glass, N.E., Maradudin, A.A.: Phys. Rev. B24, 595 (1981)

    Google Scholar 

  17. Glass, N.E., Loudon, R., Maradudin, A.A.: Phys. Rev. B24, 6843 (1981)

    Google Scholar 

  18. Glass, N.E., Maradudin, A.A.: Electron. Lett.17, 773 (1981)

    Google Scholar 

  19. Camley, R.E., Glass, N.E., Maradudin, A.A.: J. Appl. Phys.53, 3170 (1982)

    Google Scholar 

  20. Farias, G.A., Maradudin, A.A.: Phys. Rev. B28, 5675 (1983)

    Google Scholar 

  21. See, for example, Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. p. 890. New York: Dover 1965. Note that in the expression for the weightsw i given in Sect. 25.4.45 of this reference the factor (n+1)2 in the denominator must be replaced by ((n+1)!)2. The very efficient algorithms used in calculating the abscissas and weights for Gauss-Laguerre numerical quadrature (as well as for Gauss-Legendre and Gauss-Hermite numerical quadrature) for largeN were provided us by Dr. M. Bolsterli

    Google Scholar 

  22. Millar, R.F.: Proc. Camb. Philos. Soc.65, 773 (1969)

    Google Scholar 

  23. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of integral transforms. Vol. I, p. 183. New York: McGraw-Hill 1954

    Google Scholar 

  24. Ref. 17, p. 334. Sect. 8.5.4

    Google Scholar 

  25. Ref. 17, p. 334. Sect. 8.5.3

    Google Scholar 

  26. Ref. 17, p. 337. Sects. 8.13.3, 8.13.7

    Google Scholar 

  27. Agranovich, V.M., Kravtsov, V.E., Leskova, T.A.: Solid State Commun.47, 925 (1983)

    Google Scholar 

  28. Brown, G.C., Celli, V., Haller, M., Marvin, A.: Surf. Sci.136, 381 (1984)

    Google Scholar 

  29. Johnson, P.B., Christy, R.W.: Phys. Rev. B6, 4370 (1972)

    Google Scholar 

  30. Petit, R., Cadihac, M.: C.R. Acad. Sci. B262, 468 (1966)

    Google Scholar 

  31. Millar, R.F.: Proc. Camb. Philos. Soc.69, 175, 217 (1971)

    Google Scholar 

  32. Millar, R.F.: Radio Sci.8, 785 (1973)

    Google Scholar 

  33. Hill, N.R., Celli, V.: Phys. Rev. B17, 2478 (1978)

    Google Scholar 

  34. Goodman, F.O.: J. Chem. Phys.66, 976 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to B. Mühlschlegel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maradudin, A.A., Visscher, W.M. Electrostatic and electromagnetic surface shape resonances. Z. Physik B - Condensed Matter 60, 215–230 (1985). https://doi.org/10.1007/BF01304441

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01304441

Keywords

Navigation