Electrical transport in open and closed systems

  • R. Landauer


Electrical conductance is typically calculated by approaches which view the electrical field as a causative source and the motion of carriers as a response. An alternative viewpoint, which starts from the flux of carriers maintained at the edges of a sample, and then calculates how charges build up and fields develop, has gained acceptance in the treatment of disordered systems, the solid state Aharanov-Bohm effect, and universal fluctuations. We analyze some of the less appreciated concomitants of this viewpoint, emphasizing both the generality and limitations of the viewpoint. Particular emphasis is given to the Residual Resistivity Dipole; localized scatterers in metallic conductivity are accompanied by highly localized transport fields. Closed Hamiltonian systems, e.g. a metallic ring with elastic scattering and driven by a time-dependent magnetic flux, are conservative. They cannot exhibit dissipation, under our conventionally accepted forms of physics. It is suggested that the limited precision available,in principle, in calculating the behavior of physical systems limits our ability to retrieve energy from supposedly conservative systems. This can be regarded as the ultimate source of dissipative processes.


Magnetic Flux Hamiltonian System Closed System Elastic Scattering Electrical Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kohn, W., Luttinger, J.M.: Phys. Rev.108, 590 (1957); ibid.109, 1892 (1958)Google Scholar
  2. 2.
    Kubo, R.: Science233, 330 (1986)Google Scholar
  3. 3.
    Landauer, R.: IBM J. Res. Dev.1, 223 (1957)Google Scholar
  4. 4.
    Landauer, R.: Philos. Mag.21, 863 (1970)Google Scholar
  5. 5.
    Landauer, R.: Z. Phys. B—Condensed Matter and Quanta21, 247 (1975)Google Scholar
  6. 6.
    Landauer, R.: In: Localization interaction and transport phenomena. Kramer, B., Bergmann, G., Bruynseraede, Y. (eds.), p. 38. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  7. 7.
    Landauer, R.: Personal comments on the stone age of localization (unpublished) June 1983Google Scholar
  8. 8.
    Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.: Phys. Rev. B22, 3519 (1980)Google Scholar
  9. 9.
    Frensley, W.R.: Phys. Rev. Lett.57, 2853 (1986)Google Scholar
  10. 10.
    Washburn, S., Webb, R.A.: Adv. Phys.35, 375 (1986)Google Scholar
  11. 11.
    Landauer, R., Büttiker, M.: Diffusive traversal time: effective area in magnetically induced interference. Phys. Rev. B (in press)Google Scholar
  12. 12.a
    Lee, P.A., Stone, A.D., Fukuyama, H.: Phys. Rev. B35, 1039 (1987)Google Scholar
  13. 12b.
    Lee, P.A.: In: Statphys. 16, Thermodynamics and Statistical Mechanics. Stanley, H.E. (ed.), p. 169, Amsterdam: North-Holland 1986Google Scholar
  14. 12c.
    Imry, Y.: Europhys. Lett.1, 249 (1986)Google Scholar
  15. 12d.
    Al'tshuler, B.L.: JETP Lett.41, 648 (1985)Google Scholar
  16. 12e.
    Feng, S., Lee, P.A., Stone, A.D.: Phys. Rev. Lett.56, 1960 (1986); ibid. Erratum56, 2772 (1986)Google Scholar
  17. 13.
    Büttiker, M.: Phys. Rev. B35, 4123 (1987)Google Scholar
  18. 14.
    Payne, M.C., Levi, A.F.J., Phillips, W.A., Inkson, J.C., Adkins, C.J.: J. Phys. C17, 1643 (1984)Google Scholar
  19. 15.
    Al'tshuler, B.L.: JETP Lett.41, 648 (1985)Google Scholar
  20. 16.
    Lee, P.A., Ramakrishnan, T.V.: Rev. Mod. Phys.57, 287 (1985)Google Scholar
  21. 17.
    Hu P.: Phys. Rev. B35, 4078 (1987); Landauer, R.: In: Nonlinearity in condensed matter. Bishop, A.R., Campbell, D.K., Trullinger, S.E., Kumar, P. (eds.), p. 2. Berlin, Heidelberg, New York: Springer 1987; see also Ref. 39Google Scholar
  22. 18a.
    Das, A.K., Peierls, R.E.: Phys. C8, 3348 (1975); Turban, L., Nozières, P., Gerl, M.: J. Phys. (Paris)37, 159 (1976); Sham, L.: Phys. Rev. B12, 3142 (1975)Google Scholar
  23. 18b.
    Sorbello, R.S.: In: Macroscopic properties of disordered media. Burridge, R., Childress, S., Papanicolaou, G. (eds.), p. 251. Berlin, Heidelberg, New York: Springer 1982Google Scholar
  24. 18c.
    Sorbello, R.S.: Phys. Rev. B31, 798 (1985)Google Scholar
  25. 18d.
    Verbruggen, A.H., Griessen, R., Groot, D.G. de: J. Phys. F16, 557 (1986)Google Scholar
  26. 18e.
    Verbruggen, A.H., Griessen, R., Rector, J.H.: Phys. Rev. Lett.18, 1625 (1984)Google Scholar
  27. 18f.
    Verbruggen, A.H.: Electromigration and proton-Hall effect in methalhydrides. Ph.D. Thesis, Amsterdam: Rodopi, 1985. Verbruggen's experimental thesis presents the best available broad overview of the theoryGoogle Scholar
  28. 19.
    Gupta, R.P.: Solid State Commun.59, 219 (1986)Google Scholar
  29. 20.
    Landauer, R.: In: Electrical transport and optical properties of inhomogeneous Media. Garland, J.C., Tanner, D.B. (eds.), Sect. 11, p. 32. New York: AIP 1978Google Scholar
  30. 21.
    Büttiker, M., Imry, Y., Landauer, R.: Phys. Lett.96A, 365 (1983)Google Scholar
  31. 22.
    Büttiker, M., Imry, Y., Landauer, R., Pinhas, S.: Phys. Rev. B31, 6207 (1985)Google Scholar
  32. 23.
    Gefen, Y., Imry, Y., Azbel, M.Ya.: Phys. Rev. Lett.52, 129 (1984)Google Scholar
  33. 24.
    Schwarzschild, B.: Physics Today39, 17 (Jan. 1986)Google Scholar
  34. 25.
    Sommerfeld, A., Bethe, H.: In: Handbuch der Physik, 2nd ed., Vol. 24, p. 446. Berlin: Springer 1933Google Scholar
  35. 26.
    Erdös, P., Herdon, R.C.: Adv. Phys.31, 65 (1982)Google Scholar
  36. 27.
    Landauer, R., Woo, J.W.F.: Phys. Rev. B5, 1189 (1972); see also Sect. 5 of [5]Google Scholar
  37. 28a.
    Engquist, H.-L., Anderson, P.W.: Phys. Rev. B24, 1151 (1981)Google Scholar
  38. 28b.
    see also Entin-Wohlman, O., Hartzstein, C., Imry, Y.: Phys. Rev. B34, 921 (1986)Google Scholar
  39. 29.
    Büttiker, M.B.: Phys. Rev. Lett.57, 1761 (1986)Google Scholar
  40. 30.
    Benoit, A., Umbach, C.P., Laibowitz, R.B., Webb, R.A.: Phys. Rev. Lett.58, 2343 (1987)Google Scholar
  41. 31a.
    Azbel, M.Ya.: Solid State Commun.45, 527 (1983)Google Scholar
  42. 31b.
    Azbel, M.Ya., Hartstein, A., DiVincenzo, D.P.: Phys. Rev. Lett.52, 1641 (1984)Google Scholar
  43. 31c.
    Tsu, R., Esaki, L.: Appl. Phys. Lett.22, 562 (1973)Google Scholar
  44. 32.
    Büttiker, M.: Phys. Rev. B33, 3020 (1986); See also Büttiker, M.: IBM J. Res. Dev. (in press)Google Scholar
  45. 33a.
    Enz, C.P.: Phys. Lett. A119, 432 (1987)Google Scholar
  46. 33b.
    Uwaha, M., Nozières, P.: J. Phys.46, 109 (1985)Google Scholar
  47. 33c.
    Castaing, B., Nozières, P.: J. Phys.41, 701 (1980)Google Scholar
  48. 34.
    Eränen, S., Sinkkonen, J.: Phys. Rev. B35, 2222 (1987)Google Scholar
  49. 35.
    Büttiker, M.: (unpublished)Google Scholar
  50. 36.
    Kumar, N., Jayannavar, A.M.: Phys. Rev. B32, 3345 (1985)Google Scholar
  51. 37.
    Imry, Y.: In: Directions in condensed matter physics, memorial volume in honor of Shangkeng Ma, S-k., Grinstein, G., Mazenko, G. (eds.), p. 101. Singapore: World Scientific, 1986Google Scholar
  52. 38.
    Sivan, U., Imry, Y.: Phys. Rev. B33, 551 (1986)Google Scholar
  53. 39.
    Jansen, A.G.M., Wyder, P., van Kempen, H.: Europhys. News18, 21 (1987)Google Scholar
  54. 40.
    Sharvin, Yu.V.: Sov. Phys.-JETP21, 655 (1965)Google Scholar
  55. 41.
    Crandall, I.B.: Theory of vibrating systems and sound. Sect. 44, Princeton, van Nostrand 1954Google Scholar
  56. 42.
    Shapiro, B.: Phys. Rev. Lett.50, 747 (1983)Google Scholar
  57. 43a.
    Hänggi, P., Thomas, H.: Phys. Rep.88, 207 (1982)Google Scholar
  58. 43b.
    Gardiner, C.W.: Handbook of stochastic methods. 2nd Edn. Berlin, Heidelberg, New York: Springer 1985Google Scholar
  59. 43c.
    van Kampen, N.G.: Stochastic processes in physics and chemistry. Amsterdam: North-Holland 1981Google Scholar
  60. 44.
    Carini, J.P., Muttalib, K.A., Nagel, S.R.: Phys. Rev. Lett.53, 102 (1984)Google Scholar
  61. 45.
    Landauer, R.: Phys. Rev. B33, 6497 (1986)Google Scholar
  62. 46a.
    Landauer, R., Büttiker, M.: Phys. Rev. Lett.54, 2049 (1985)Google Scholar
  63. 46b.
    Büttiker, M.: Phys. Scr.I 14, 82 (1986)Google Scholar
  64. 47.
    Landauer, R.: Resistance in metallic rings. Phys. Rev. Lett.58, 2150 (1987)Google Scholar
  65. 48.
    Lenstra, D., Haeringen, W. van: Phys. Rev. Lett.57, 1623 (1986)Google Scholar
  66. 49a.
    Caldeira, A.O., Leggett, A.J.: Ann. Phys. (NY)149, 374 (1983)Google Scholar
  67. 49b.
    Schmid, A.: Ann. Phys. (NY)170, 333 (1986)Google Scholar
  68. 50.
    Landauer, R.: IEEE Spectrum4, 105 (1967)Google Scholar
  69. 51a.
    Landauer, R.: Phys. Scr.35, 88 (1987)Google Scholar
  70. 51b.
    Landauer, R.: Found. Phys.16, 551 (1986)Google Scholar
  71. 51c.
    Landauer, R.: In: Der Informationsbegriff in Technik und Wissenschaft. Folberth, O.G., Hackl, C. (Hrsg.), p. 139. München: Oldenbourg 1986Google Scholar
  72. 52.
    Landauer, R.: Ber. Bunsenges.80, 1048 (1986)Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • R. Landauer
    • 1
  1. 1.IBM Thomas J. Watson Research CenterYorktown HeightsUSA

Personalised recommendations