Skip to main content
Log in

Heat transfer calculations in turbulent boundary layers using integral relations

Berechnung des Wärmeüberganges in turbulenten Grenzschichten unter Verwendung von Integralverfahren

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

An integral method for the computation of turbulent thermal boundary layers is presented which is based on two integral relations each for the flow and temperature fields. This required the evaluation of a heat flux integralC T from experimental data. In the incompressible case, an approximation forC T was obtained which permits the fast and reliable computation of turbulent heat transfer problems. Finally, the experimental and numerical requirements for the extension to compressible flows are discussed.

Zusammenfassung

Es wird ein Integralverfahren zur Berechnung von turbulenten Temperaturgrenzschichten vorgestellt, das sich auf je zwei Integralbedingungen für das Geschwindigkeits-und Temperaturfeld stützt. Aus Experimenten bei inkompressiblen Strömungen wurde ein Wärmeaustauschintegral bestimmt. Mit einer Näherungsformel dafür ließ sich der Wärmeübergang in turbulenten inkompressiblen Strömungen schnell und zuverlässig berechnen. Schließlich werden die experimentellen und numerischen Anforderungen für die Erweiterung der Methode auf kompressible Strömungen dargelegt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

b :

heat transfer parameter

c 1...c4 :

coefficients in (21)

C f :

friction coefficient

C D :

dissipation integral

C T :

heat flux integral

G :

function, approximating the velocity field (21)

h :

total energy

I 1...I 3 :

higher order integrals (13)

Ma:

Mach number

Pr:

Prandtl number (16)

ρ:

pressure

q :

total heat flux

Re:

Reynolds number (21)

St:

Stanton number (16)

t, ū :

dimensionless temperature and velocity

u, v :

velocity components

x, y :

phys. coordinates

α, β:

coefficients in (24)

δ:

outer edge of boundary layers

\(\left. \begin{gathered} \delta _1 \ldots \delta _1 \hfill \\ \Delta _1 ,\Delta _2 \hfill \\ \vartheta _1 ,\vartheta _2 \hfill \\ \end{gathered} \right\}\) :

characteristic boundary layer thicknesses (6), (15)

η, η* :

dimensionless wall distance

κ:

c p/cv

λ:

thermal conductivity

μ:

dynamic viscosity

ρ:

density

τ:

effective shear stress

ω:

wake function

e :

effective (molecular+by turbulent exchange generated)

F :

of the flow field

T :

of the temperature field

ω:

at the wall

δ:

at outer edge of boundary layer

References

  1. Abbott, D. E., andH. E. Bethel: Application of the Galerkin-Kantorovich-Dorodnitsyn Method of Integral Relations to the Solution of Steady Laminar Boundary Layers. Ing.-Arch.37, 110–124 (1968).

    Google Scholar 

  2. Walz, A.: Boundary Layers of Flow and Temperature, p. 115. Cambridge, Mass.: M.I.T. Press. 1969.

    Google Scholar 

  3. Bell, J. B., A. E. Perry, andP. N. Joubert: Velocity and Temperature Profiles in Adverse Pressure Gradient Turbulent Boundary Layers. J. Fluid Mech.25, 299–320 (1966).

    Google Scholar 

  4. Blom, J.: An Experimental Determination of the Turbulent Prandtl Number in a Developing Temperature Boundary Layer. Dissertation, TH Eindhoven 1970.

  5. Eckert, E. R. G., R. Eichhorn, andT. Eddy: Measurements of Temperature Profiles in Boundary Layers with Non-Uniform Wall Temperature. ARL Technical Note 60-161 (1960).

  6. Reynolds, W. C., W. M. Kays, andS. J. Kline: Heat Transfer in the Turbulent Incompressible Boundary Layer. NASA-Memo 12-1 (2,3,4)-58 W (1958).

  7. Spalding, D. B.: Contribution to the Theory of Heat Transfer Across a Turbulent Boundary Layer. Int. J. Heat and Mass Transfer7, 743–762 (1964).

    Google Scholar 

  8. Schulz-Jander, B.: Ein mehrparametriges Integralverfahren zur Berechnung von laminaren und turbulenten inkompressiblen Strömung- und Temperaturgrenzschichten. DLR-FB 73-24 (1973).

  9. Dvorak, F. A., andM. R. Head: Heat Transfer Calculations for the Constant Property Turbulent Boundary Layer and Comparisons with Experiment. ARC R & M 3592 (1969).

  10. Moretti, P. M., andW. M. Kays: Heat Transfer in a Turbulent Boundary Layer with Varying Free-Stream Velocity and Varying Surface Temperature—An Experimental Study. Int. J. Heat and Mass Transfer8, 1187–1202 (1965).

    Google Scholar 

  11. Culick, F. E. C., andJ. A. F. Hill: A Turbulent Analog of the Stewartson-Illingworth Transformation. J. Aeron. Sci.25, 259–262 (1958).

    Google Scholar 

  12. Mager, A.: Transformation of the Compressible Turbulent Boundary Layer. J. Aeron. Sci.25, 305–311 (1958).

    Google Scholar 

  13. Küster, H. J.: Ein Integralverfahren zur Berechnung zweidimensionaler kompressibler turbulenter Grenzschichten mit Druckgradient und Wärmeübergang auf der Basis einer Kompressibilitätstransformation. Dissertation D 83, TU Berlin, 1972.

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 5 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schulz-Jander, B. Heat transfer calculations in turbulent boundary layers using integral relations. Acta Mechanica 21, 301–312 (1975). https://doi.org/10.1007/BF01303072

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01303072

Keywords

Navigation