Primitivity and ends of graphs


A graphX is said to beprimitive if its automorphism groupG acts primitively on the vertex setVX; that is, the onlyG-invariant equivalence relations onVX are the one where all the classes have size one and the equivalence relation which has only one class, the whole ofVX. We investigate the end structure of locally finite primitive graphs. Our main result shows that it has a very simple description; in particular, locally finite primitive graphs are accessible in the sense of Thomassen and Woess.

This is a preview of subscription content, access via your institution.


  1. [1]

    W. Dicks, andM. J. Dunwoody:Groups acting on graphs, Cambridge University Press, Cambridge 1989.

    Google Scholar 

  2. [2]

    M. J. Dunwoody: Cutting up graphs,Combinatorica 2 (1982), 15–23.

    Google Scholar 

  3. [3]

    M. J. Dunwoody: An inaccessible group, in: (ed. G. A. Niblo and M. Roller)Proceedings of Geometric Group Theory 1991, London Mathematical Society Lecture note series 181, Cambridge University Press 1993, 75–78.

  4. [4]

    H. A. Jung, andM. E. Watkins: On the structure of infinite vertex-transitive graphs,Discrete Math. 18 (1977), 45–53.

    Google Scholar 

  5. [5]

    H. A. Jung, andM. E. Watkins: The connectivities of locally finite primitive graphs,Combinatorica 9 (1989), 261–267.

    Google Scholar 

  6. [6]

    R. G. Möller: Ends of graphs,Math. Proc. Camb. Phil. Soc. 111 (1992), 255–266.

    Google Scholar 

  7. [7]

    R. G. Möller: Ends of graphs II,Math. Proc. Camb. Phil. Soc. 111 (1992), 455–460.

    Google Scholar 

  8. [8]

    J.-P. Serre:Trees, Springer 1980.

  9. [9]

    C. Thomassen, andW. Woess: Vertex-transitive graphs and accessibility,J. Combin. Theory, Ser. B 58 (1993), 248–268.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Möller, R.G. Primitivity and ends of graphs. Combinatorica 14, 477–484 (1994).

Download citation

AMS subject classification code (1991)

  • 05 C 25
  • 20 B 15
  • 20 B 27