Directeds-t numberings, Rubber bands, and testing digraphk-vertex connectivity


LetG=(V, E) be a directed graph andn denote |V|. We show thatG isk-vertex connected iff for every subsetX ofV with |X| =k, there is an embedding ofG in the (k−1)-dimensional spaceR k−1,fVR k−1, such that no hyperplane containsk points of {f(v)|vV}, and for eachvV−X, f(v) is in the convex hull of {f(w)| (v, w)∈E}. This result generalizes to directed graphs the notion of convex embeddings of undirected graphs introduced by Linial, Lovász and Wigderson in “Rubber bands, convex embeddings and graph connectivity”,Combinatorica 8 (1988), 91–102.

Using this characterization, a directed graph can be tested fork-vertex connectivity by a Monte Carlo algorithm in timeO((M(n)+nM(k)) · (logn)) with error probability<1/n, and by a Las Vegas algorithm in expected timeO((M(n)+nM(k)) ·k), whereM(n) denotes the number of arithmetic steps for multiplying twon×n matrices (M(n)=O(n 2.376)). Our Monte Carlo algorithm improves on the best previous deterministic and randomized time complexities fork>n 0.19; e.g., for\(k = \sqrt n \), the factor of improvement is >n 0.62. Both algorithms have processor efficient parallel versions that run inO((logn)2) time on the EREW PRAM model of computation, using a number of processors equal to logn times the respective sequential time complexities. Our Monte Carlo parallel algorithm improves on the number of processors used by the best previous (Monte Carlo) parallel algorithm by a factor of at leastn 2/(logn)3 while having the same running time.

Generalizing the notion ofs-t numberings, we give a combinatorial construction of a directeds-t numbering for any 2-vertex connected directed graph.

This is a preview of subscription content, access via your institution.


  1. [1]

    M. Becker, W. Degenhardt, J. Doenhardt, S. Hertel, G. Kaninke, W. Keber, K. Mehlhorn, S. Näher, H. Rohnert, andT. Winter: A probabilistic algorithm for vertex connectivity of graphs,Information Processing Letters 15 (1982), 135–136.

    Google Scholar 

  2. [2]

    B. Bollobás:Extremal Graph Theory, Academic Press, London, 1978.

    Google Scholar 

  3. [3]

    J. Cheriyan, andS. N. Maheshwari: Finding nonseparating induced cycles and independent spanning trees in 3-connected graphs,Journal of Algorithms 9 (1988), 507–537.

    Google Scholar 

  4. [4]

    J. Cheriyan, M. Kao, andR. Thurimella: Scan-first search and sparse certificates: An improved parallel algorithm fork-vertex connectivity,SIAM J. Computing 22 (1993), 157–174.

    Google Scholar 

  5. [5]

    D. Coppersmith, andS. Winograd: Matrix multiplication via arithmetic progressions,J. Symbolic Comp. 9 (1990), 23–52.

    Google Scholar 

  6. [6]

    S. Even: An algorithm for determining whether the connectivity of a graph is at leastk, SIAM J. Computing 4 (1975), 393–396.

    Google Scholar 

  7. [7]

    S. Even:Graph Algorithms, Computer Science Press Potomac, Md., 1979.

    Google Scholar 

  8. [8]

    Z. Galil: Finding the vertex connectivity of graphs,SIAM J. Computing 9 (1980), 197–199.

    Google Scholar 

  9. [9]

    Z. Galil, andV. Pan: Improved processor bounds for combinatorial problems in RNC,Combinatorica 8 (1988), 189–200.

    Google Scholar 

  10. [10]

    G. H. Hardy, andE. M. Wright:An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1979.

    Google Scholar 

  11. [11]

    A. Itai andM. Rodeh: The multi-tree approach to reliability in distributed networks.Information and Computation 79 (1988), 43–59.

    Google Scholar 

  12. [12]

    E. Kaltofen, andV. Pan: Processor efficient parallel solution of linear systems over an abstract field,Proc. 3rd Annual ACM Symposium on Parallel Algorithms and Architectures, 1991.

  13. [13]

    R. M. Karp, E. Upfal andA. Wigderson: Constructing a perfect matching is in random NC,Combinatorica 6 (1986), 35–48.

    Google Scholar 

  14. [14]

    A. Lempel, S. Even andI. Cederbaum: An algorithm for planarity testing of graphs, in:Theory of Graphs: Internat. Sympos.: Rome, P. Rosenstiehl, Ed., 215–232, Gordon and Breach, New York, 1966.

    Google Scholar 

  15. [15]

    N. Linial, L. Lovász andA. Wigderson: Rubber bands, convex embeddings and graph connectivity,Combinatorica 8 (1988), 91–102.

    Google Scholar 

  16. [16]

    L. Lovász: Connectivity in digraphs,J. Combinatorial Theory (B) 15 (1973), 174–177.

    Google Scholar 

  17. [17]

    L. Lovász, M. Saks, andA. Schrijver: Orthogonal representations and connectivity of graphs,Linear Algebra and its Applications 114/115 (1989), 439–454.

    Google Scholar 

  18. [18]

    K. Mehlhorn:Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness, Springer-Verlag, Berlin, 1984.

    Google Scholar 

  19. [19]

    K. Mulmuley, U. V. Vazirani, andV. V. Vazirani: Matching is as easy as matrix inversion,Combinatorica 7 (1987), 105–113.

    Google Scholar 

  20. [20]

    H. Nagamochi andT. Ibaraki: Linear time algorithms for findingk-edge-connected andk-node-connected spanning subgraphs, Technical Report #89006, Dept. of Applied Mathematics & Physics, Faculty of Engineering, Kyoto University, 1989.Algorithmica 7 (1992), 583–596.

    Google Scholar 

  21. [21]

    J. Plehn: Ph. D. Thesis, University of Bonn, Bonn, Germany.

  22. [22]

    A. Schrijver: Fractional packing and covering, in:Packing and Covering in Combinatorics, A. Schrijver, Ed., 201–274, Mathematisch Centrum, Amsterdam, 1979.

    Google Scholar 

  23. [23]

    J. T. Schwartz: Fast probabilistic algorithms for verification of polynomial identities,J. ACM 27 (1980), 701–717.

    Google Scholar 

  24. [24]

    R. W. Whitty: Vertex-disjoint paths and edge-disjoint branchings in directed graphs,J. Graph Theory 11 (1987), 349–358.

    Google Scholar 

  25. [25]

    A. Zehavi, andA. Itai: Three tree-paths,J. Graph Theory 13 (1989), 175–188.

    Google Scholar 

  26. [26]

    R. E. Zippel: Probabilistic algorithms for sparse polynomials, in:Proc. EUROSAM 79, Lecture Notes in Computer Science72, 216–226, Springer-Verlag, 1979.

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheriyan, J., Reif, J.H. Directeds-t numberings, Rubber bands, and testing digraphk-vertex connectivity. Combinatorica 14, 435–451 (1994).

Download citation

AMS subject classification code (1980)

  • 05 C 40
  • 52 A 20