Skip to main content
Log in

Least squares methods for the mechanics of nonhomogeneous granular assemblies

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

Using least squares methods consistent averages for stress and strain of a nonhomogeneous granular assembly are derived. The expression for the average of the strain increment serves as a constraint in a functional approach to solving the displacements and spins of particles of a granular assembly in a statistical manner. The method shows directly what microscopic angular distributions are needed to describe the internal state of an assembly. They are the distribution of contacts, the distribution of both the averages and the variations in the interactive properties of the grains. The method is then applied to an assembly with normal-interacting circular grains in two dimensions. The incremental stiffness and the average displacement of the contacts as a function of the angle are obtained for the case of non-rotating strains. The results show clearly that for this case the sliding mode of motion is the most relevant one for deviatoric loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Oda, M.: Initial fabrics and their relations to mechanical properties of a granular material. Solis Found.12, 17–36 (1972).

    Google Scholar 

  2. Oda, M.: Deformation mechanisms of sand in triaxial compression tests. Soils Found.12, 45–64 (1972).

    Google Scholar 

  3. Allersma, H. G. B.: Photoelastic stress analysis and strains in simple shear. Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft (Vermeer, P., Luger, D., eds.), pp. 345–354. Rotterdam: Balkema 1982.

    Google Scholar 

  4. Cundall, P. A., Strack, O. D. L.: A discrete numerical method for granular assemblies. Geotechnique29, 47–65 (1979).

    Google Scholar 

  5. Cundall, P. A., Drescher, A., Strack, O. D. L.: Numerical experiments on granular assemblies. Proc. IUTAM Conf on Deformation and Failure of Granular Materials, Delft (Vermeer, P., Luger, D., eds.), pp. 355–369. Rotterdam: Balkema 1982.

    Google Scholar 

  6. Chang, C. S., Misra, A., Sundaram, S. S.: Micromechanical modelling of cemented sands under low amplitude oscillations. Geotechnique40, 251–263 (1990).

    Google Scholar 

  7. Koenders, M. A.: The incremental stiffness of an assembly of particles. Acta Mech.70, 31–49 (1987).

    Google Scholar 

  8. Koenders, M. A.: A two dimensional non-homogeneous deformation model for sand. PhD Thesis, University of London 1984.

  9. Geniev, G. A.: Problems of the dynamics of a granular medium. Akad. Stroit. Archit. SSSR, Moscow 1958.

    Google Scholar 

  10. de Josselin de Jong, G.: The double sliding free rotating model for granular assemblies. Geotechnique21, 155–163 (1971).

    Google Scholar 

  11. Mandel, J.: Sur les equations d'ecoulement des sols ideaux en deformation plane et le concept de double glissement. J. Mech. Phys. Solids14, 303–308 (1966).

    Google Scholar 

  12. Spencer, A. J. M.: A theory of the kinematics of ideal soils under plane strain conditons. J. Mech. Phys. Solids12, 337–351 (1964).

    Google Scholar 

  13. Vermeer, P. A.: Double sliding within an elastic-plastic framework. LGM Mededelingen, Tribute to Professor de Josselin de Jong, Delft Soil Mechanics Laboratory Publications Part XXI no 2, pp. 199–208 (1980).

    Google Scholar 

  14. Spencer, A. J. M.: Mechanics of solids. The Rodney Hill Anniversary Volume (Hopkins, J., Sewell, G., eds.), p. 607, Oxford: Pergamon Press 1981.

    Google Scholar 

  15. Harris, D.: Plasticity models for soil, granular and jointed rock materials. J. Mech. Phys. Solids40, 273–290 (1992).

    Google Scholar 

  16. de Josselin de Jong, G.: Mathematical elaboration of the double sliding, free rotating model. Arch. Mech.29, 561–591 (1977).

    Google Scholar 

  17. Anand, L.: Plane deformation of ideal granular materials. J. Mech. Phys. Solids31, 105–122 (1983).

    Google Scholar 

  18. Koenders, M. A.: Localized deformation using higher order stress/strain theory. Trans. ASME, J. Energy Resources Techn.112, 51–53 (1990).

    Google Scholar 

  19. Arthur, J. R. F., Dunstan, T. F.: Rupture layers in granular media. Proc. IUTAM Conf. on Deformation and Failure of Granular Materials, Delft (Vermeer, P., Luger, D., eds.), pp. 453–460. Rotterdam: Balkema 1982.

    Google Scholar 

  20. Koenders, M. A., Arthur, J. R. F., Dunstan, T. F.: The behaviour of soil at peak stress. In: Yielding, damage and failure of solids (Boehler, J., ed.), pp. 805–818. London: Mechanical Engineering Publication 1990.

    Google Scholar 

  21. Thornton, C.: Deformation of a simple particulate model. Proc. Const. Equations of Soils, IXICSMFE Tokyo, pp. 255–262 (1977).

  22. Thornton, C.: The condition for failure of a face-centred cubic array of uniform rigid spheres. Geotechnique29, 441–459 (1979).

    Google Scholar 

  23. Wilson, A. H.: Thermodynamics and statistical mechanics. Cambridge: Cambridge University Press 1966.

    Google Scholar 

  24. Dantu, P., Weber, J.: Etudes statistique des forces intergranulaire dans un milieu pulverulent. Geotechnique18, 50–55 (1968).

    Google Scholar 

  25. Drescher, A., de Josselin de Jong, G.: Photoelastic verification of a mechanical model for the flow of a granular material. J. Mech. Phys. Solids20, 337–351 (1972).

    Google Scholar 

  26. Walton, K.: The effective elastic moduli of a random packing of spheres. J. Mech. Phys. Solids35, 213–226 (1987).

    Google Scholar 

  27. Becker, E.: Kontinuumsmechanik. Stuttgart: Teubner 1975.

    Google Scholar 

  28. Seber, G. A. F.: Linear regression analysis. New York: Wiley 1977.

    Google Scholar 

  29. van der Giessen, E.: A model of anisotropically hardening materials based upon the concept of a plastically-induced orientational structure. In: Yielding, damage and failure of solids (Boehler, J., ed.), pp. 187–198 London: Mechanical Engineering Publication 1990.

    Google Scholar 

  30. Koenders, M. A.: Analytical estimates for constitutive relations of assemblies of particles in elasto-frictional contact. Proc. Powders and Grains Conference, Birmingham (Thornton, C., ed.), Rotterdam: Balkema 1993.

    Google Scholar 

  31. DERIVE (4th ed.) Soft Warehouse Europe GmbH, Schloß Hagenberg, A-4232 Hagenberg, Austria (1990).

  32. Konishi, J.: Microscopic model studies on the mechanical behaviour of granular materials. US-Japan Seminar Cont. Mech. Stat. Appr. Gran. Mat., pp. 27–46 (1978).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenders, M.A. Least squares methods for the mechanics of nonhomogeneous granular assemblies. Acta Mechanica 106, 23–40 (1994). https://doi.org/10.1007/BF01300942

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01300942

Keywords

Navigation