Skip to main content
Log in

Theory and analysis of shells undergoing finite elastic-plastic strains and rotations

  • Contributed Papers
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Summary

In this paper theory and analysis of shells undergoing finite elastic and finite plastic strains and rotations are presented. The shell kinematics are based on a relaxed normality hypothesis allowing transverse normal material fibers to be stretched and bended, whereas shear deformations are neglected. Lagrangean logarithmic membrane and logarithmic bending strain measures are introduced, and it is shown that they can be additively decomposed into purely elastic and purely plastic parts for superposed moderately large strains and unrestricted rotations. The logarithmic strain measures are used to formulate thermodynamic-based constitutive equations for isotropic elastic and plastic material behavior with isotropic and kinematic hardening induced by continuous plastic flow. To analyse path-dependent elastic-plastic shell deformations by iterative procedures the application of logarithmic strain measures allows to realize load steps with corresponding moderate strains and unrestricted rotations. The moderate strain restriction for superposed deformations can be assured by an appropriate update procedure. Formulae are given to determine exactly the rotational change of the reference configuration during the update. Finally, the principle of virtual work with corresponding elastic-plastic material tensor is formulated and it is shown that the weak form of the virtual work leads to the Lagrangean equilibrium equations and boundary conditions well-known from the nonlinear theory of elastic shells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

F :

deformation gradient

U :

right Cauchy-Green stretch tensor

R :

rotation tensor

E :

Green strain tensor

e :

Almansi strain tensor

H :

Lagrangean logarithmic strain tensor

τ:

Kirchhoff stress tensor in the 3-D continuum

σ:

Cauchy stress tensor

()e :

reference to an elastic deformation

()p :

reference to a plastic deformation

(), (+):

reference to a first and a second superposed deformation, respectively

(*):

reference to an alternative decomposition of the superposed deformation

AB :

composition of the two tensorsA andB

A T :

transposed ofA

A 2 :

square ofA

A −1 :

inverse ofA

u :

displacement field of the shell space

v :

displacement field of the middle surface

h,\(\bar h\) :

shell thickness in the initial and the current state

ξ:

thickness coordinate,\( - \frac{h}{2} \leqq \zeta \leqq \frac{h}{2}\)

g i ,g i :

base vectors in the undeformed shell space,i∈{1, 2, 3}

\(\bar g_i ,\bar g^i \) :

base vectors in the deformed shell space

a α,a α :

surface base vectors on the undeformed middle surface ξ=0, α∈{1, 2}

āα, āα :

surface base vectors on the deformed reference surface ξ=0

n,\(\bar n\) :

unit normal vector on the surface ξ=0 in the initial and the deformed configuration, respectively

b,\(\bar b\) :

curvature tensor of the surface ξ=0 in the initial and current state

γ:

Green membrane strain tensor

χ:

Green bending strain tensor

π:

Green second order strain tensor

g :

logarithmic membrane strain tensor

k :

logarithmic bending strain tensor

p :

logarithmic second order strain tensor

T :

plane Kirchhoff stress tensor

N :

stress resultant tensor

ℓ:

stress couple tensor

ℒ:

second order stress resultant tensor

References

  1. Naghdi, P. M.: The theory of shells and plates. In: Handbuch der Physik, vol. VIa/2 (Flügge, S., ed.), pp. 425–640. Wien New York: Springer 1972.

    Google Scholar 

  2. Pietraszkiewicz, W., Szwabowicz, M. L.: Entirely Lagrangean nonlinear theory of thin shells. Arch. Mech.33, 273–288 (1981).

    Google Scholar 

  3. Nolte, L.-P.: Beitrag zur Herleitung und vergleichende Untersuchung geometrisch nichtlinearer Schalentheorien unter Berücksichtigung großer Rotationen. Mitt. Inst. f. Mech.39, Ruhr-Universität Bochum 1983.

  4. Schmidt, R., Stumpf, H.: On the stability and post-buckling of thin elastic shells with unrestricted rotations. Mech. Res. Comm.11, 105–114 (1984).

    Google Scholar 

  5. Pietraszkiewicz, W.: Lagrangean description and incremental formulation in the non-linear theory of thin shells. Int. J. Non-Linear Mech.19, 115–140 (1984).

    Google Scholar 

  6. Pietraszkiewicz, W.: Geometrically nonlinear theories of thin elastic shells. Adv. Mech.12, 51–130 (1989).

    Google Scholar 

  7. Stumpf, H.: General concept of the analysis of thin elastic shells. ZAMM64, 337–350 (1986).

    Google Scholar 

  8. Nolte, L.-P., Makowski, J., Stumpf, H.: On the derivation and comparative analysis of large rotation shell theories. Ing.-Arch.56, 145–160 (1986).

    Google Scholar 

  9. Valid, R.: Finite rotations, variational principles and buckling in shell theory. In: Finite rotations in structural mechanics (Pietraszkiewicz, W., ed.), pp. 317–332. Berlin Heidelberg New York Tokyo: Springer 1986.

    Google Scholar 

  10. Başar, Y., Krätzig, W.: A consistent shell theory for finite deformation. Acta Mech.76, 73–87 (1986).

    Google Scholar 

  11. Stumpf, H., Makowski, J.: On large strain deformation of shells. Acta Mech.45, 153–168 (1986).

    Google Scholar 

  12. Gruttmann, F., Stein, E., Wriggers, P.: Theory and numerics of thin elastic shells with finite rotations. Ing. Arch.59, 54–67 (1989).

    Google Scholar 

  13. Başar, Y., Ding, Y.: Finite rotation elements for the non-linear analysis of thin shell structures. Int. J. Solids Struct.26, 83–87 (1990).

    Google Scholar 

  14. Simo, J. C., Rifai, M. S., Fox, D. D.: On a stress resultant geometrically exact shell model. Part IV: Variable thickness shells with through-the-thickness stretching. Comp. Meth. Appl. Mech. Eng.81, 91–126 (1990).

    Google Scholar 

  15. Schieck, B., Pietraszkiewicz, W., Stumpf, H.: Theory and numerical analysis of shells undergoing large elastic strains. Int. J. Solids Struct.29, 689–709 (1992).

    Google Scholar 

  16. Taber, L. A.: Large elastic deformation of shear deformable shells of revolution: theory and analysis. ASME J. Appl. Mech.54, 578–584 (1987).

    Google Scholar 

  17. Makowski, J., Stumpf, H.: Finite axisymmetric deformation of shells of revolution with application to flexural buckling of circular plates. Ing.-Arch.39, 456–472 (1989).

    Google Scholar 

  18. Makowski, J., Stumpf, H.: Buckling equations of elastic shells with rotational degrees of freedom undergoing finite strain deformation. Int. J. Solids Struct.26, 353–368 (1990).

    Google Scholar 

  19. Chroscielewski, J., Makowski, J., Stumpf, H.: Genuinely resultant shell finite elements accounting for geometric and material non-linearity. Int. J. Num. Meth. Eng.35, 63–94 (1992).

    Google Scholar 

  20. Green, A. E., Naghdi, P. M.: Theory of an elastic-plastic Cosserat surface. Int. J. Solids Struct.4, 907–927 (1968).

    Google Scholar 

  21. Simo, J. C., Kennedy, J. G.: On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: formulation and integration algorithms. Comp. Meth. Appl. Mech. Eng.96, 133–171 (1992).

    Google Scholar 

  22. Stumpf, H.: Shakedown of structures undergoing large elastic-plastic deformation. In: Anisotropy and localization of plastic deformation. Proc. Plasticity '91, Third Int. Symp. Plasticity and its Current Applications. (Boehler, J.-P., Khan, A., eds.), pp. 668–671 Amsterdam: Elsevier 1991.

    Google Scholar 

  23. Stumpf, H.: Theoretical and computational aspects in the shakedown analysis of finite elastoplasticity. Int. J. Plasticity9, 583–602 (1993).

    Google Scholar 

  24. Schmidt, R., Weichert, D.: A refined theory of elastic-plastic shells at moderate rotations. ZAMM69, 11–21 (1989).

    Google Scholar 

  25. Başar, Y., Weichert, D.: A finite-rotation theory for elastic-plastic shells under consideration of shear deformations. ZAMM71, 379–389 (1991).

    Google Scholar 

  26. Eckart, C.: The thermodynamics of irreversible processes. 4. The theory of elasticity and inelasticity. Phys. Rev.73, 373–382 (1948).

    Google Scholar 

  27. Sedov, L. I.: Foundations of the non-linear mechanics of continua. Oxford: Pergamon Press 1966.

    Google Scholar 

  28. Lee, E. H., Liu, D. T.: Finite strain elastic-plastic theory with application to plane-wave analysis. J. Appl. Phys.38, 19–27 (1967).

    Google Scholar 

  29. Lee, E. H.: Elasto-plastic deformation at finite strains. J. Appl. Mech.36, 1–6 (1969).

    Google Scholar 

  30. Simo, J. C.: A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition: Part I. Continuum formulation. Comp. Meth. Appl. Mech. Eng.66, 199–219 (1988).

    Google Scholar 

  31. Le, K. Ch., Stumpf, H.: Constitutive equations for elastoplastic bodies at finite strain: Thermodynamic implementation. Acta Mech.100, 155–170 (1993).

    Google Scholar 

  32. Stumpf, H., Badur, J.: On missing links of rate-independent elasto-plasticity at finite strains. Mech. Res. Comm.17, 353–364 (1990).

    Google Scholar 

  33. Weber, G., Anand, L.: Finite deformation constitutive equations and a time integration procedure for isotropic, hyperelastic-viscoplastic solids. Comp. Meth. Appl. Mech. Eng.79, 173–202 (1990).

    Google Scholar 

  34. Etorovic, A. L., Bathe, K. J.: A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using the logarithmic stress and strain measures. Int. J. Num. Meth. Eng.30, 1099–1114 (1990).

    Google Scholar 

  35. Schieck, B., Stumpf, H.: Deformation analysis for finite elastic-plastic strains in a Lagrangean type description. Int. J. Solids Struct.30, 2639–2660 (1993).

    Google Scholar 

  36. Nemat-Nasser, S.: Phenomenological theories of elastoplasticity and strain localization at high strain rates. Appl. Mech. Rev.45/3, 19–45 (1992).

    Google Scholar 

  37. Ogden, R. W.: On Eulerian and Lagrangean objectivity in continuum mechanics. Arch. Mech.36, 207–218 (1984).

    Google Scholar 

  38. Anand, L.: On Hencky's approximate strain-energy function for moderate deformations. ASME J. Appl. Mech.46, 78–82 (1979).

    Google Scholar 

  39. Anand, L.: Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids34, 293–304 (1986).

    Google Scholar 

  40. Schieck, B.: Große elastische Dehnungen in Schalen aus hyperelastischen, inkompressiblen Materialien. Mitt. Inst. f. Mech.69, Ruhr-Universität Bochum 1989.

  41. Schieck, B., Stumpf, H.: The appropriate corotational rate, the exact formula of the plastic spin and constitutive model for finite elastoplasticity (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stumpf, H., Schieck, B. Theory and analysis of shells undergoing finite elastic-plastic strains and rotations. Acta Mechanica 106, 1–21 (1994). https://doi.org/10.1007/BF01300941

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01300941

Keywords

Navigation