Finding the αn-th largest element

Abstract

We describe an algorithm for selecting the αn-th largest element (where 0<α<1), from a totally ordered set ofn elements, using at most (1+(1+o(1))H(α))·n comparisons whereH(α) is the binary entropy function and theo(1) stands for a function that tends to 0 as α tends to 0. For small values of α this is almost the best possible as there is a lower bound of about (1+H(α))·n comparisons. The algorithm obtained beats the global 3n upper bound of Schönhage, Paterson and Pippenger for α<1/3.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. Blum, R.W. Floyd, V. Pratt, R.L. Rivest, andR.E. Tarjan: Time bounds for selection,Journal of Computer and System Sciences,7 (1973), 448–461.

    Google Scholar 

  2. [2]

    S.W. Bent andJ.W. John: Finding the median requires 2n comparisons, InProceedings of the 17th Annual ACM Symposium on Theory of Computing, Providence, Rhode Island, 1985, 213–216.

  3. [3]

    L. Carroll: Lawn tennis tournaments,St. James's Gazette, pages 5–6, August 1883, Reprinited in “The complete stories of Lewis Carrol”, Magpie Books Ltd., London, 1993, 775–782.

    Google Scholar 

  4. [4]

    W. Cunto andJ.I. Munro: Average case selection,Journal of the ACM,36 (2) (1989), 270–279.

    Google Scholar 

  5. [5]

    D. Dor andU. Zwick: Selecting the median, InProceedings of the 6rd Annual ACM-SIAM Symposium on Discrete Algorithms, 1995, 28–37.

  6. [6]

    R.W. Floyd andR.L. Rivest: Expected time bounds for selection,Communication of the ACM,18 (1975), 165–173.

    Google Scholar 

  7. [7]

    A. Hadian andM. Sobel: Selecting thet-th largest using binary errorless comparisons,Colloquia Mathematica Societatis János Bolyai,4 (1969), 585–599.

    Google Scholar 

  8. [8]

    J.W. John: A new lower bound for the set-partition problem,SIAM Journal on Computing,17 (4) (1988), 640–647.

    Google Scholar 

  9. [9]

    S.S. Kislitsyn: On the selection of thek-th element of an ordered set by pairwise comparisons,Sibirsk. Mat. Zh.,5 (1964), 557–564.

    Google Scholar 

  10. [10]

    Donald E. Knuth:Sorting and searching, Volume 3 ofThe art of computer programming, Addison-Wesley, 1973.

  11. [11]

    T. Motoki: A note on upper bounds for selection problems,Information Processing Letters,15 (5) (1982), 214–219.

    Google Scholar 

  12. [12]

    P.V. Ramanan andL. Hyafil: New algorithms for selection,Journal of Algorithms,5 (1984), 557–578.

    Google Scholar 

  13. [13]

    J. Schreier: On tournament elimination systems,Mathesis Polska,7 (1932), 154–160. (in Polish).

    Google Scholar 

  14. [14]

    A. Schönhage, M. Paterson, andN. Pippenger: Finding the median,Journal of Computer and System Sciences,13 (1976), 184–199.

    Google Scholar 

  15. [15]

    F. Yao: On lower bounds for selection problems, Technical Report MAC TR-121, Mass. Inst. of Technology, 1974.

  16. [16]

    C.K. Yap: New upper bounds for selection,Communication of the ACM,19 (9) (1976), 501–508.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dor, D., Zwick, U. Finding the αn-th largest element. Combinatorica 16, 41–58 (1996). https://doi.org/10.1007/BF01300126

Download citation

Mathematics Subject Classification (1991)

  • 68 Q 25
  • 68 Q 20