Point sets with distinct distances

Abstract

For positive integersd andn letf d (n) denote the maximum cardinality of a subset of then d-gird {1,2,...,n}d with distinct mutual euclidean distances. Improving earlier results of Erdős and Guy, it will be shown thatf 2 (n)≥c·n 2/3 and, ford≥3, thatf d (n)≥c d ·n 2/3 ·(lnn)1/3, wherec, c d >0 are constants. Also improvements of lower bounds of Erdős and Alon on the size of Sidon-sets in {12,222,...,n 2} are given.

Furthermore, it will be proven that any set ofn points in the plane contains a subset with distinct mutual distances of sizec 1·n 1/4, and for point sets in genral position, i.e. no three points on a line, of sizec 2·n 1/3 with constantsc 1,c 2>0. To do so, it will be shown that forn points in ℝ2 with distinct distancesd 1,d 2,...,d t , whered i has multiplicitym i , one has ∑ t i=1 m 2 i c·n 3.25 for a positive constantc. If then points are in general position, then we prove ∑ t i=1 m 2 i c·n 3 for a positive constantc and this bound is tight.

Moreover, we give an efficient sequential algorithm for finding a subset of a given set with the desired properties, for example with distinct distances, of size as guaranteed by the probabilistic method under a more general setting.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon, L. Babai, andA. Itai: A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem,Journal of Algorithms,7 (1986), 567–583.

    Google Scholar 

  2. [2]

    M. Ajtai, J. Komlós, J. Pintz, J. Spencer, andE. Szemerédi: Extremal Uncrowded Hypergraphs,J. Comb. Theory (Ser. A),32 (1982), 321–335.

    Google Scholar 

  3. [3]

    N. Alon, andP. Erdős: An Application of Graph Theory to Additive Number Theory,European Journal of Combinatorics,6 (1985), 201–203.

    Google Scholar 

  4. [4]

    N. Alon, H. Lefmann, andV. Rödl: On an Anti-Ramsey Type Result,Colloquia Mathematica Societatis János Bolyai, 60. Sets, Graphs and Numbers, Budapest (1991), 9–22.

  5. [5]

    N. Alon, andJ. Spencer: The Probabilistic Method,Wiley & Sons, New York, (1992).

    Google Scholar 

  6. [6]

    D. Avis, P. Erdős, andJ. Pach: Distinct Distances Determined by Subsets of a Point Set in Space,Computational Geometry 1, (1991), 1–11.

    Google Scholar 

  7. [7]

    K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, andE. Welzl: Combinatorial Complexity Bounds for Arrangements of Curves and Spheres,Discrete and Computational Geometry,5 (1990), 99–160.

    Google Scholar 

  8. [8]

    H. Davenport: Analytic Methods for Diophantine Equations and Diophantine Inequalities,Campus Publishers (1962), 1–30.

  9. [9]

    R. A. Duke, H. Lefmann, andV. Rödl: On Uncrowded Hypergraphs,Random Structures and Algorithms, to appear.

  10. [10]

    P. Erdős: On some Problems of Elementary and Combinatorial Geometry,Annali di Mathematica Pura et Applicata Ser. 4,103 (1975), 99–108.

    Google Scholar 

  11. [11]

    P. Erdős, andP. C. Fishburn: Multiplicities of Interpoint Distances in Finite Planar Sets,preprint, (1991), to appear inDiscrete and Applied Math.

  12. [12]

    P. Erdős, andR. Guy: Distinct Distances between Lattice Points,Elemente der Mathematik,25 (1970), 121–123.

    Google Scholar 

  13. [13]

    P. Erdős, R. L. Graham, I. Ruzsa, andH. Taylor: Bounds for Arrays of Dots with Distinct Slopes or Lengths,Combinatorica,12 (1992), 39–44.

    Google Scholar 

  14. [14]

    P. Fishburn: Convex Polygons with Few Vertices,Dimacs Technical Report,92–17 (1992).

  15. [15]

    Z. Füredi: The Maximum Number of Unit Distances in a Convexn-gon,J. Comb. Theory (Ser. A),55 (1990), 316–320.

    Google Scholar 

  16. [16]

    S. W. Golomb: Construction of Signals with Favourable Correlation Properties,Surveys in Combinatorics, London Mathematical Society Lecture Note Series,166 (1991), 1–39.

    Google Scholar 

  17. [17]

    S. W. Golomb, andH. Taylor: Two-dimensional Synchronization Patterns for Minimum Ambiguity,IEEE Transactions Information Theory,IT-28 (1982), 600–604.

    Google Scholar 

  18. [18]

    R. K. Guy: Unsolved Problems in Number Theory,Springer Verlag, New York, (1981), 132–133.

    Google Scholar 

  19. [19]

    G. H. Hardy, andE. M. Wright: An Introduction to the Theory of Numbers,Oxford University Press, (1979).

  20. [20]

    E. Landau: Handbuch der Lehre von der Verteilung der Primzahlen,Teubner Verlag, Leipzig, (1909).

    Google Scholar 

  21. [21]

    J. Pach, andM. Sharir: Repeated Angles in the Plane and Related Problems,J. Comb. Theory (Ser. A),59 (1992), 12–22.

    Google Scholar 

  22. [22]

    S. Ramanujan: Collected Papers,Chelsea Publishing Company, (1962), 133–135.

  23. [23]

    J. Spencer, E. Szemerédi, andW. T. Trotter: Unit Distances in the Euclidean Plane,Graph Theory and Combinatorics, Academic Press, London (1984), 253–278.

    Google Scholar 

  24. [24]

    T. Thiele: Point Sets with Distinct Slopes or Lengths,preprint, (1993).

  25. [25]

    R. C. Vaughan: The Hardy-Littlewood Method,Cambridge University Press, (1981), 1–25.

  26. [26]

    B. M. Wilson: Proofs of Some Formulæ Enunciated by Ramanujan,Proceedings London Mathematical Society,21 (1923), 235–255.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lefmann, H., Thiele, T. Point sets with distinct distances. Combinatorica 15, 379–408 (1995). https://doi.org/10.1007/BF01299744

Download citation

Mathematics Subject Classification (1991)

  • 52 C 10