# Point sets with distinct distances

## Abstract

For positive integersd andn letf d (n) denote the maximum cardinality of a subset of then d-gird {1,2,...,n}d with distinct mutual euclidean distances. Improving earlier results of Erdős and Guy, it will be shown thatf 2 (n)≥c·n 2/3 and, ford≥3, thatf d (n)≥c d ·n 2/3 ·(lnn)1/3, wherec, c d >0 are constants. Also improvements of lower bounds of Erdős and Alon on the size of Sidon-sets in {12,222,...,n 2} are given.

Furthermore, it will be proven that any set ofn points in the plane contains a subset with distinct mutual distances of sizec 1·n 1/4, and for point sets in genral position, i.e. no three points on a line, of sizec 2·n 1/3 with constantsc 1,c 2>0. To do so, it will be shown that forn points in ℝ2 with distinct distancesd 1,d 2,...,d t , whered i has multiplicitym i , one has ∑ t i=1 m 2 i c·n 3.25 for a positive constantc. If then points are in general position, then we prove ∑ t i=1 m 2 i c·n 3 for a positive constantc and this bound is tight.

Moreover, we give an efficient sequential algorithm for finding a subset of a given set with the desired properties, for example with distinct distances, of size as guaranteed by the probabilistic method under a more general setting.

This is a preview of subscription content, access via your institution.

## References

1. [1]

N. Alon, L. Babai, andA. Itai: A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem,Journal of Algorithms,7 (1986), 567–583.

2. [2]

M. Ajtai, J. Komlós, J. Pintz, J. Spencer, andE. Szemerédi: Extremal Uncrowded Hypergraphs,J. Comb. Theory (Ser. A),32 (1982), 321–335.

3. [3]

N. Alon, andP. Erdős: An Application of Graph Theory to Additive Number Theory,European Journal of Combinatorics,6 (1985), 201–203.

4. [4]

N. Alon, H. Lefmann, andV. Rödl: On an Anti-Ramsey Type Result,Colloquia Mathematica Societatis János Bolyai, 60. Sets, Graphs and Numbers, Budapest (1991), 9–22.

5. [5]

N. Alon, andJ. Spencer: The Probabilistic Method,Wiley & Sons, New York, (1992).

6. [6]

D. Avis, P. Erdős, andJ. Pach: Distinct Distances Determined by Subsets of a Point Set in Space,Computational Geometry 1, (1991), 1–11.

7. [7]

K. Clarkson, H. Edelsbrunner, L. Guibas, M. Sharir, andE. Welzl: Combinatorial Complexity Bounds for Arrangements of Curves and Spheres,Discrete and Computational Geometry,5 (1990), 99–160.

8. [8]

H. Davenport: Analytic Methods for Diophantine Equations and Diophantine Inequalities,Campus Publishers (1962), 1–30.

9. [9]

R. A. Duke, H. Lefmann, andV. Rödl: On Uncrowded Hypergraphs,Random Structures and Algorithms, to appear.

10. [10]

P. Erdős: On some Problems of Elementary and Combinatorial Geometry,Annali di Mathematica Pura et Applicata Ser. 4,103 (1975), 99–108.

11. [11]

P. Erdős, andP. C. Fishburn: Multiplicities of Interpoint Distances in Finite Planar Sets,preprint, (1991), to appear inDiscrete and Applied Math.

12. [12]

P. Erdős, andR. Guy: Distinct Distances between Lattice Points,Elemente der Mathematik,25 (1970), 121–123.

13. [13]

P. Erdős, R. L. Graham, I. Ruzsa, andH. Taylor: Bounds for Arrays of Dots with Distinct Slopes or Lengths,Combinatorica,12 (1992), 39–44.

14. [14]

P. Fishburn: Convex Polygons with Few Vertices,Dimacs Technical Report,92–17 (1992).

15. [15]

Z. Füredi: The Maximum Number of Unit Distances in a Convexn-gon,J. Comb. Theory (Ser. A),55 (1990), 316–320.

16. [16]

S. W. Golomb: Construction of Signals with Favourable Correlation Properties,Surveys in Combinatorics, London Mathematical Society Lecture Note Series,166 (1991), 1–39.

17. [17]

S. W. Golomb, andH. Taylor: Two-dimensional Synchronization Patterns for Minimum Ambiguity,IEEE Transactions Information Theory,IT-28 (1982), 600–604.

18. [18]

R. K. Guy: Unsolved Problems in Number Theory,Springer Verlag, New York, (1981), 132–133.

19. [19]

G. H. Hardy, andE. M. Wright: An Introduction to the Theory of Numbers,Oxford University Press, (1979).

20. [20]

E. Landau: Handbuch der Lehre von der Verteilung der Primzahlen,Teubner Verlag, Leipzig, (1909).

21. [21]

J. Pach, andM. Sharir: Repeated Angles in the Plane and Related Problems,J. Comb. Theory (Ser. A),59 (1992), 12–22.

22. [22]

S. Ramanujan: Collected Papers,Chelsea Publishing Company, (1962), 133–135.

23. [23]

J. Spencer, E. Szemerédi, andW. T. Trotter: Unit Distances in the Euclidean Plane,Graph Theory and Combinatorics, Academic Press, London (1984), 253–278.

24. [24]

T. Thiele: Point Sets with Distinct Slopes or Lengths,preprint, (1993).

25. [25]

R. C. Vaughan: The Hardy-Littlewood Method,Cambridge University Press, (1981), 1–25.

26. [26]

B. M. Wilson: Proofs of Some Formulæ Enunciated by Ramanujan,Proceedings London Mathematical Society,21 (1923), 235–255.

Download references

Authors

## Rights and permissions

Reprints and Permissions

## About this article

### Cite this article

Lefmann, H., Thiele, T. Point sets with distinct distances. Combinatorica 15, 379–408 (1995). https://doi.org/10.1007/BF01299744

Download citation

• Received:

• Issue Date:

• 52 C 10